大数据啊大数据!浪尖浪尖聊大数据开始本文之前,希望大家参与一下下面的投票。做这个投票的主要原因是最近经常有找浪尖咨询大数据,自学,培训及找工作的事情,问题归类如下:大数据要不要培训自学一段时间,发现很痛苦,没人指导想放弃,培训费用太高了培训发现跟不上,举步维艰培训结束了,为啥面试机会甚少下面分类回答一下。1.大数据需要培训吗?对于java老鸟,因为有比较强的编程经验,可以买点视频或者找大牛付费专栏
原创
2021-03-19 13:47:02
10000+阅读
大数据啊大数据
原创
2021-07-23 17:57:03
10000+阅读
今天听了一场报告会,是清华计算机系60周年系列讲座之一,主讲人是哈工大软院院长李建中教授,主题《计算和数据资源受限的大数据计算的复杂性理论与高效算法研究》,李老师介绍的大数据计算理论体系很...
原创
2022-04-29 22:22:20
1574阅读
大数据框架 系统平台 Hadoop、CDH、HDP 监控管理 CM、Hue、Ambari、Dr.Elephant、Ganglia、Zabbix、Eagle 文件系统 HDFS、GPFS、Ceph、GlusterFS、Swift 、BeeGFS、Alluxio 资源调度 YARN、Mesos 协调框架
原创
2022-07-30 00:54:47
654阅读
各个行业的业务数据都运行在关系数据库中,但是历史数据的保存,数据分析和数据挖掘,需要准实时的从关系数据库导入到分布式数据库系统中。本文介绍了利用ISFRAME实现数据收集和备份的方法。
原创
2013-06-01 18:44:35
10000+阅读
一、 Hadoop的来源 Hadoop是Google的集群系统的开源实现。 --Google集群系统:GFS(Google File System)、MapReduce、BigTable. --Hadoop主要由HDFS(Hadoop Distributed File System Hadoop分布
原创
2021-07-29 16:23:31
10000+阅读
8 大数据技术8.1 大数据及其特征典型大数据应用中的数据在如下的一个或多个(4V)方面与传统技术面对的数据表现出显著不同:数据量(Volume)大、类型(Variety)多样、速度(Velocity)快、价值(Value)高而密度稀疏。大数据技术的目标乃是简单、高效并安全地共享大数据,支持大数据应用。大数据技术的关键需求包括:①可伸缩性,能够有效处理越来越多的数据和越来越多的访问。②可靠性,能够
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。一、数据采集与预处理对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散
接上2篇:一小时了解数据挖掘①:解析常见的大数据应用案例 一小时了解数据挖掘②:分类算法的应用和成熟案例解析数据挖掘分类技术 从分类问题的提出至今,已经衍生出了很多具体的分类技术。下面主要简单介绍四种最常用的分类技术,不过因为原理和具体的算法实现及优化不是本书的重点,所以我们尽量用应用人员能够理解的语言来表述这些技术。 在我们学习这些算法之前必须要清楚一点,分类算法不会百分百准确
1、什么是大数据百度百科描述:大数据(bigdata)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。IBM提出了大数据的5V特征:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。个人理解:大数据是在信息数据
前言不知道大家有没有过在搜索引擎搜索过旅游的关键字,不久就可能收到机票的推销的经验。如今是大数据的时代,数据的价值越来越重要。数据即资产,想必大家都听说过。最近公司的项目中也用到了一些大数据的技术,本文对大数据相关的知识体系做了一个整体的梳理。什么是大数据大数据,你可能就简单理解为数据量大,那是多大才算大数据呢?如果只有数据量大是不是太片面单一了,实际上如果你说是从事大数据开发, 那么起码要满足下
prefacePython在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。Python数据分析与挖掘技术概述所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的
Lambda架构由Storm的作者Nathan Marz提出。旨在设计出一个能满足。实时大数据系统关键特性的架构,具有高容错、低延时和可扩展等特。
最近在整理整理java大数据处理这一系列的文章,在网上发现一个java写excel文件的方式,非常的有技巧,并且性能非常高,我在自己机器上简单的操作了一下,感觉非常的棒 这里就把这个方法和大家分享一下,一起讨论一下这种方式的成熟度. 简单说明 1、核心原理-查看excel的"源代码" 找到数据存
数据库时代要说大数据的真正起源,必须得提到数据库。无论是移动互联网还是PC因特网,或者是计算机本身,背后都是一群又一群程序员写的程序,而一切程序说到底都还是对数据的处理。如果把数据处理比作一个王国的话,那这个王国的国王就是数据库。那什么是数据库呢?用最简单的话来说,就是一个用户可以把数据存储在数据库,需要的时候,用户可以告诉数据库,我需要某些数据,然后数据库会自行完成实际的数据处理过程,返回数据给
原创
2021-09-28 21:15:15
10000+阅读
点赞
2评论
目录1 大数据概念2 大数据特点(4V)3 大数据应用场景4 大数据发展前景5 大数据部门间业务流程分析6 大数据部门内组织结构1 大数据概念大数据概念大数据(Big Data):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。按顺序给出数据存储单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。 1Byte = 8bit 1K = 10
原创
2021-03-25 17:46:20
10000+阅读
一.BigIntegerJava中,超过long型的整数已经不能被称为整数了,它们被封装成BigInteger对象.在BigInteger类中,实现四则运算都是方法来实现,并不是采用运算符.BigInteger类的构造方法: // 构造方法中,采用字符串的形式给出整数
//四则运算代码:
public static void main(String[] args) {
刚才听了几位嘉宾的演讲对各个行业应用大数据的状况有全面的了解,我这里想跟大家分享一点,我们尽可能保证时间,来分享我们对于大数据环境下企业转型的基本思路的想法。 实际上刚才不论是传统的做制造业的还是做一些新兴的电子商务行业的同学,我都能看得到我们面临着转型巨大的压力,或者说我们在现在这种大数据时代下面企业要面临的一些新的商业模式选择的问题。 实际上导致这种现象很重要的原因就在于,我们现在的市
人们常说,眼见为实,只有自己亲眼见到的才会相信。但是我们都知道眼睛会产生错觉,而且人们在生活中被错觉误导的情况屡见不鲜。例如图中,你以为她们肯定是真人的照片。世界上有些事情,即使是自己亲眼所见到的也未必一定是真的。现象和本质往往不是一致的。定向思维是很容易将看见的认作事实的,祖祖辈辈的经验让我们觉得眼睛不会欺骗自己,映入眼帘的东西是最可靠的。但是很多时候恰恰是这份可靠让我们做出错误的判断,让事情越