题意:在一个单位方格边长为1的矩阵中藏着灰太狼和它的同伴,等待着喜羊羊和它的同伴,为了不让喜羊羊和同伴被抓住,我们可以在矩形草坪中设置单位长度为1的栅栏,求最短的栅栏长度。
解题思路:这道题是要把狼和羊分开,如果熟悉最小割的话,就比较容易了,将所有的羊同源点连一条无穷大的边,狼和汇点连一条无穷大的边,剩下的格子与周围格子连一条容量为1的边,接下来就是求最小割即可。主要是为什么这样建图就是对的,首先是容量为1的边,这个比较好理解,两个相邻格子只要加一个栅栏就可以隔开了。接下来是无穷大的边,因为羊的限制是由它周围的格子决定的,与源点无关,而且回顾最小割,羊与源点的边集肯定不会在最小割集里,这样也符合实际问题。
#include <cstring>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#define INF 0x3fffffff
#define MAXN 205
using namespace std;
int N, M, G[MAXN][MAXN], dis[MAXN*MAXN];
int dir[2][2] = {0, 1, 1, 0};
int idx, head[MAXN*MAXN];
const int sink = MAXN*MAXN-1, source = MAXN*MAXN-2;
struct Edge
{
int v, cap, next;
}e[MAXN*MAXN*4];
inline void init()
{
idx = -1;
memset(head, 0xff, sizeof (head));
}
inline int to(int x, int y)
{
return (x-1)*M+(y-1);
}
inline void insert(int a, int b, int c)
{
++idx;
e[idx].v = b, e[idx].cap = c;
e[idx].next = head[a], head[a] = idx;
}
inline bool judge(int x, int y)
{
if (x < 1 || x > N || y < 1 || y > M) {
return false;
}
return true;
}
inline void check(int x, int y)
{
int xx, yy;
if (G[x][y] == 1) {
insert(to(x, y), sink, INF);
insert(sink, to(x, y), 0);
}
else if (G[x][y] == 2) {
insert(source, to(x, y), INF);
insert(to(x, y), source, 0);
}
for (int i = 0; i < 2; ++i) {
xx = x + dir[i][0], yy = y + dir[i][1];
if (judge(xx, yy)) {
insert(to(x, y), to(xx, yy), 1);
insert(to(xx, yy), to(x, y), 1);
}
}
}
bool bfs()
{
int pos;
queue<int>q;
memset(dis, 0xff, sizeof (dis));
dis[source] = 0;
q.push(source);
while (!q.empty()) {
pos = q.front();
q.pop();
for (int i = head[pos]; i != -1; i = e[i].next) {
if (dis[e[i].v] == -1 && e[i].cap > 0) {
dis[e[i].v] = dis[pos]+1;
q.push(e[i].v);
}
}
}
return dis[sink] != -1;
}
int dfs(int u, int flow)
{
if (u == sink) {
return flow;
}
int tf = 0, sf;
for (int i = head[u]; i != -1; i = e[i].next) {
if (dis[u]+1 == dis[e[i].v] && e[i].cap > 0 && (sf = dfs(e[i].v, min(flow-tf, e[i].cap)))) {
e[i].cap -= sf, e[i^1].cap += sf;
tf += sf;
if (tf == flow) {
return flow;
}
}
}
if (!tf) {
dis[u] = -1;
}
return tf;
}
int dinic()
{
int ans = 0;
while (bfs()) {
ans += dfs(source, INF);
}
return ans;
}
int main()
{
int ca = 0;
while (scanf("%d %d", &N, &M) == 2) {
init();
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= M; ++j) {
scanf("%d", &G[i][j]);
}
}
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= M; ++j) {
check(i, j);
}
}
printf("Case %d:\n%d\n", ++ca, dinic());
}
return 0;
}