题目大意:给出一张地图,地图上面的0表示空地,1表示羊,2表示狼,现在要求你建围栏,使得所有的羊都不会被狼攻击,问至少需要建多少个围栏

解题思路:最小割,狼和羊之间的联系就是s–>u….->v–>t(u表示狼,v表示羊),我们要做的就是断开这样的线路,且付出的代价最小,这就是最小割了
狼和源点相连接,容量为INF,羊和汇点相连接,容量为INF(刚开始弄成1了,1的话,就表示1头羊只能被一头狼攻击,这明显是错的),两个格子之间连边,表示围栏,容量为1

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int MAXNODE = 40010;
const int MAXEDGE = 400010;
typedef int Type;
const Type INF = 0x3f3f3f3f;

struct Edge{
    int u, v, next;
    Type cap, flow;
    Edge() {}
    Edge(int u, int v, Type cap, Type flow, int next) : u(u), v(v), cap(cap), flow(flow), next(next){}
};

struct Dinic{
    int n, m, s, t;
    Edge edges[MAXEDGE];
    int head[MAXNODE];
    int cur[MAXNODE];
    bool vis[MAXNODE];
    Type d[MAXNODE];
    vector<int> cut;

    void init(int n) {
        this->n = n;
        memset(head, -1, sizeof(head));
        m = 0;
    }

    void AddEdge(int u, int v, Type cap) {
        edges[m] = Edge(u, v, cap, 0, head[u]);
        head[u] = m++;
        edges[m] = Edge(v, u, 0, 0, head[v]);
        head[v] = m++;
    } 

    bool BFS() {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;

        while (!Q.empty()) {
            int u = Q.front(); Q.pop();
            for (int i = head[u]; ~i; i = edges[i].next) {
                Edge &e = edges[i];
                if (!vis[e.v] && e.cap > e.flow) {
                    vis[e.v] = true;
                    d[e.v] = d[u] + 1;
                    Q.push(e.v);
                }
            }
        }
        return vis[t];
    }

    Type DFS(int u, Type a) {
        if (u == t || a == 0) return a;

        Type flow = 0, f;
        for (int &i = cur[u]; i != -1; i = edges[i].next) {
            Edge &e = edges[i];
            if (d[u] + 1 == d[e.v] && (f = DFS(e.v, min(a, e.cap - e.flow))) > 0) {
                e.flow += f;
                edges[i ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }

    Type Maxflow(int s, int t) {
        this->s = s; this->t = t;
        Type flow = 0;
        while (BFS()) {
            for (int i = 0; i < n; i++)
                cur[i] = head[i];
            flow += DFS(s, INF);
        }
        return flow;
    }

    void Mincut() {
        cut.clear();
        for (int i = 0; i < m; i += 2) {
            if (vis[edges[i].u] && !vis[edges[i].v]) 
                cut.push_back(i);
        }
    }
}dinic;
int n, m, cas = 1;
int dir[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

void solve() {
    int source = 0, sink = n * m + 1;
    dinic.init(sink + 1); 

    int t;
    for (int i = 0; i < n; i++)
        for (int j = 1; j <= m; j++) {
            scanf("%d", &t);
            if (t == 1) dinic.AddEdge(i * m + j, sink, INF);
            if (t == 2) dinic.AddEdge(source, i * m + j, INF);
        }
    int tx, ty;
    for (int i = 0; i < n; i++)
        for (int j = 1; j <= m; j++)
            for (int k = 0; k < 4; k++) {
                tx = i + dir[k][0];
                ty = j + dir[k][1];
                if (tx < 0 || tx >= n || ty < 1 || ty > m) continue;
                dinic.AddEdge(i * m + j, tx * m + ty, 1);
            }
    printf("Case %d:\n%d\n", cas++, dinic.Maxflow(source, sink));
}

int main() {
    while (scanf("%d%d", &n, &m) != EOF) solve();
    return 0;
}