由于自动控制研究的是动态过程,因此常常用微分方程来描述。非线性微分方程的求解十分困难,因此常常在正常工作点附近将非线性微分方程线性化来得到线性微分方程,再通过拉普拉斯变换将微分方程转换为代数方程进行求解。
在自控原理基础中,拉普拉斯变换(拉氏变换)作为一个工具,在大多数情况下不需要考虑数学意义上严谨的使用条件。在此不介绍具体知识,仅给出常用的拉氏变换对及性质。
拉普拉斯变换:
函数的拉氏变换:
函数的拉氏逆变换:
注意此处有隐含要求:当 时,.控制理论中涉及的时间函数 在时间为负时总是等于 ,因此采用的是单边拉普拉斯变换。有时积分下限设为 ,这是是为了处理有些时间函数在 的点上不连续的情况。
在本篇中为描述方便,也记
对于自控原理基础的内容,在一般的情况下很少需要通过定义来计算时间函数的拉氏变换,大多数情况下只需要根据常用的拉氏变换对以及性质计算即可。
常用拉氏变换对
脉冲函数 | 1 |
阶跃函数 | |
常用性质
- 线性定理
若 为常数,则有: - 比例定理
若为常数,则有: - 时域平移定理
若为正常数,将纯滞后秒: , 则有: - 复域平移定理
若为实数或负数 ,则有: - 实微分定理
若 ,的阶导数分别存在,且其拉氏变换也都存在,则有: - 实积分定理
若 ,则有多重积分的拉氏变换:多重定积分的拉氏变换: - 复微分定理
若 ,则除的极点外,有: - 复积分定理
若 ,则除的极点外,有: - 卷积定理
函数与函数的卷积运算为:若 , ,则有: - 函数乘积的拉氏变换
若 ,,则有: - 终值定理
若 ,的所有极点均位于左半开平面,则存在,成立终值定理: - 初值定理
若的拉氏变换存在、存在,则有初值定理:
拉氏反变换
除根据常见拉氏变换对、使用拉氏变换公式和性质进行拉式反变换外,一般用部分分式展开法。
设 是关于 的有理真分式,其中 是实常数, 是正整数,将
情况一:特征方程
在此情况下 可以展开成:其中 为特征方程 的第 个单根, 为 在 处的留数,其计算方法如下:注意这里的
情况二:特征方程有重根
设 有 重根 ,则在此情况下有:于是 可以展开成:其中
留数 按照情况一中方法计算,留数 的计算方法如下:注意这里的
以情况二为一般情况,可以得到
结语
最后需要说明的是:
有些函数是无法进行拉普拉斯变换的(在数学上,函数 存在拉氏变换的条件是拉普拉斯积分收敛),
但是物理上可以实现的信号总是存在拉氏变换的。