- 下面我提出一个行列区块隐藏唯余的例子供大家参考:
- 左图:数字2对C1摒除,得到2在r8c1或r9c1。
- 右图:由于第七宫的2肯定在C1,所以点算r9c2得到唯余解r9c2=8
- 以下这个盘势,SE 大动干戈,用的是三链数解法,图解说明如下:
1. 上左图,数字 2,4,8 对第 9 宫进行摒除,得到三链数 {248}。
2. 上右图,数字 9 对第 9 宫进行摒除,得到摒余解 r8c7 = 9。
- 对基础余数题而言,数对是非必要的解题技巧,但为什么要用数对呢?
- 前面谈到数对有占位的功效,透过数对的占位,可以将一些点算的解题步骤转换成摒除步骤,如此可以降低点算的负担。
- 数对的另外一个功效就是聚焦,把余数解的位置点出来,请看下面的图解说明。
上两图,若个别看第 6 列的数对或第 3 行的候选数都看不出有解。
上左图,将两个单元一起看,第 3 宫是交集,因此把焦点放在 r3c7。
上右图,r3c7 = {15},因与数对同在第 3 宫因此 r3c7 = {15} – {1} = 5。
不积跬步无以至千里不积小流无以成江海