0️⃣python数据结构与算法学习路线 学习内容:
- 基本算法:枚举、排序、搜索、递归、分治、优先搜索、贪心、双指针、动态规划等...
- 数据结构:字符串(string)、列表(list)、元组(tuple)、字典(dictionary)、集合(set)、数组、队列、栈、树、图、堆等...
题目:
给你一个字符串 s
,找到 s
中最长的回文子串(从左向右和从右向左读一样的的字符串)。
输入输出:
解题思路:
需要一种能够快速判断原字符串的所有子串是否是回文子串的方法,于是想到了「动态规划」。「回文」天然具有「状态转移」性质。回文去掉两头以后,剩下的部分依然是回文。
如果一个字符串的头尾两个字符都不相等,那么这个字符串一定不是回文串;
如果一个字符串的头尾两个字符相等,才有必要继续判断下去。
如果里面的子串是回文,整体就是回文串;
如果里面的子串不是回文串,整体就不是回文串。
第 1 步:定义状态
dp[i][j] 表示子串 s[i..j] 是否为回文子串,这里子串 s[i..j] 定义为左闭右闭区间,可以取到 s[i] 和 s[j]。
第 2 步:思考状态转移方程
在这一步分类讨论(根据头尾字符是否相等),根据上面的分析得到:
dp[i][j] =Ture (if s[i] == s[j])
dp[i + 1][j - 1]
说明:「动态规划」事实上是在填一张二维表格,由于构成子串,因此 i 和 j 的关系是 i <= j ,因此,只需要填这张表格对角线以上的部分。
看到 dp[i + 1][j - 1] 就得考虑边界情况。
边界条件是:表达式 [i + 1, j - 1] 不构成区间,即长度严格小于 2,即 j - 1 - (i + 1) + 1 < 2 ,整理得 j - i < 3。
这个结论很显然:j - i < 3 等价于 j - i + 1 < 4,即当子串 s[i..j] 的长度等于 2 或者等于 3 的时候,其实只需要判断一下头尾两个字符是否相等就可以直接下结论了。
如果子串 s[i + 1..j - 1] 只有 1 个字符,即去掉两头,剩下中间部分只有 11 个字符,显然是回文;
如果子串 s[i + 1..j - 1] 为空串,那么子串 s[i, j] 一定是回文子串。
因此,在 s[i] == s[j] 成立和 j - i < 3 的前提下,直接可以下结论,dp[i][j] = true,否则才执行状态转移。
第 3 步:考虑初始化
初始化的时候,单个字符一定是回文串,因此把对角线先初始化为 true,即 dp[i][i] = true 。
事实上,初始化的部分都可以省去。因为只有一个字符的时候一定是回文,dp[i][i] 根本不会被其它状态值所参考。
第 4 步:考虑输出
只要一得到 dp[i][j] = true,就记录子串的长度和起始位置,没有必要截取,这是因为截取字符串也要消耗性能,记录此时的回文子串的「起始位置」和「回文长度」即可。
第 5 步:考虑优化空间
因为在填表的过程中,只参考了左下方的数值。事实上可以优化,但是增加了代码编写和理解的难度,丢失可读和可解释性。在这里不优化空间。
注意事项:总是先得到小子串的回文判定,然后大子串才能参考小子串的判断结果,即填表顺序很重要。
算法实现:
出现问题:
1. s[::-1] 反向排列列表
s1 = s[l:0:-1]输出 “daba”
2. 输入:dp = [[False for _ in range(5)] for _ in range(5)]
输出:[[False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False]]