数据类型的介绍

har        //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数

类型的意义:类型决定了开辟空间内存的大小

类型的基本归类

整形家族

char//数据在内存中存储的是ASCII值,所以char也是整形
unsigned char
signed char
short
unsigned short [int]
signed short [int]//[]表示可省略
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]

浮点型家族

float
double

构造类型

>数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

指针类型

int *pi;
char *pc;
float* pf;
void* pv;

空类型

void 表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型。

整形在内存中的存储

变量在创建的时候需要开辟内存

int a=20;
intb=-10;

深度刨析数据在内存中的存储_浮点数

深度刨析数据在内存中的存储_补码_02

我们知道为 a 分配四个字节的空间。 那如何存储?

原码、反码、补码  

计算机中的有符号数有三种表示方法,即原码、反码和补码。

三种表示方法均有​符号位​和​数值位​两部分,符号位都是用​0​表示​“正​”,用​1​表示“​负”​,而数值位,三种表示方法各不相同。

原码

直接将二进制按照正负数的形式翻译成二进制就可以。

反码

将原码的符号位不变,其他位依次按位取反就可以得到了。

补码

反码+1就得到补码。

正数的原、反、补码都相同。

对于整形来说:数据存放内存中其实存放的是补码。

深度刨析数据在内存中的存储_浮点数_03

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理; 同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需额外硬件电路

深度刨析数据在内存中的存储_浮点数_04

大小端介绍  

什么大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;

小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

百度2015年系统工程师笔试题:

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)

int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret=check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}

return 0;
}

笔试题练习

练习1.

#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}

深度刨析数据在内存中的存储_补码_05

练习2.

#include <stdio.h> 
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}

深度刨析数据在内存中的存储_有效数字_06

练习3.

int main()
{
char a = 128;
printf("%u\n", a);
return 0;
}

深度刨析数据在内存中的存储_补码_07

总结:有符号的char的范围是:-128——127

无符号的char的范围是:0——255;


练习4.

int main()
{
int i=-20;
unsigned int j =10;
printf("%d\n",i+j);
return 0;
}

深度刨析数据在内存中的存储_浮点数_08

练习5.

int main()
{
unsigned int i;//死循环
for (i = 9; i >= 0; i--)
{
printf("%u\n", i);
}

return 0;
}

练习6.

#include<string.h>
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));
return 0;
}

深度刨析数据在内存中的存储_有效数字_09

unsigned char i = 0;
int main()
{
for (i = 0; i <= 255; i++)//死循环
{
printf("hello world\n");
}
return 0;
}

深度刨析数据在内存中的存储_有效数字_10

浮点型在内存中的存储

常见的浮点数:

3.14159 1E10 浮点数家族包括: float、double、long double 类型。 浮点数表示的范围:float.h中定义

浮点数存储的例子:

int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);

*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}

深度刨析数据在内存中的存储_有效数字_11

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大? 要理解这个结果,一定

要搞懂浮点数在计算机内部的表示方法。

详细解读:

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式: 

(-1)^S * M * 2^E

(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

M表示有效数字,大于等于1,小于2。

2^E表示指数位。

举例来说: 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。

IEEE 754规定: 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

深度刨析数据在内存中的存储_浮点数_12

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。  

深度刨析数据在内存中的存储_浮点数_13

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。

比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。

以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

深度刨析数据在内存中的存储_补码_14

然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000  

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

好了,关于浮点数的表示规则,就说到这里。

解释前面的题目:

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ? 首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000

1001。

9 -> 0000 0000 0000 0000 0000 0000 0000 1001  

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成: V=(-1)^0 ×0.00000000000000000001001×2^(-126)=1.001×2^(-146) 显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看例题的第二部分。 请问浮点数9.0,如何用二进制表示?还原成十进制又是多少? 首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

9.0 -> 1001.0 ->(-1)^01.0012^3 -> s=0, M=1.001,E=3+127=130  

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。 所以,写成二进制形式,应该是s+E+M,即

0 10000010 001 0000 0000 0000 0000 0000  

这个32位的二进制数,还原成十进制,正是 1091567616 。

深度刨析数据在内存中的存储_浮点数_15