小灰 程序员小灰 

前一段时间,小灰发布了上下两篇关于股票买卖的算法题讲解,激发了很多小伙伴的兴趣。


这一次,小灰把这两篇漫画整合在一起,并且修改了其中的一些细节错误,感谢小伙伴们的指正。

漫画:寻找股票买入卖出的最佳时机(整合版)_Java

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_02



—————  第二天  —————

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_03

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_04

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_05

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_06

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_07


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_08


什么意思呢?让我们来举个例子,给定如下数组:漫画:寻找股票买入卖出的最佳时机(整合版)_Java_09




该数组对应的股票涨跌曲线如下:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_10

显然,从第2天价格为1的时候买入,从第5天价格为8的时候卖出,可以获得最大收益:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_11


此时的最大收益是 8-1=7。

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_12


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_13



漫画:寻找股票买入卖出的最佳时机(整合版)_Java_14

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_15


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_16


在上面这个例子中,最大值9在最小值1的前面,我们又该怎么交易?总不能让时间倒流吧?

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_17

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_18



————————————

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_19

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_20

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_21

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_22

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_23

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_24


以下图为例,假如我们已经确定价格4的时候为卖出时间点,那么此时最佳的买入时间点是哪一个呢?


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_25

我们要选择价格4之前的区间,且必须是区间内最小值,显然,这个最佳的选择是价格2的时间点。


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_26


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_27


第1步,初始化操作,把数组的第1个元素当做临时的最小价格;最大收益的初始值是0:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_28


第2步,遍历到第2个元素,由于2<9,所以当前的最小价格变成了2;此时没有必要计算差值的必要(因为前面的元素比它大),当前的最大收益仍然是0:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_29


第3步,遍历到第3个元素,由于7>2,所以当前的最小价格仍然是2;如我们刚才所讲,假设价格7为卖出点,对应的最佳买入点是价格2,两者差值7-2=5,5>0,所以当前的最大收益变成了5:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_30



第4步,遍历到第4个元素,由于4>2,所以当前的最小价格仍然是2;4-2=2,2<5,所以当前的最大收益仍然是5:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_31


第5步,遍历到第5个元素,由于3>2,所以当前的最小价格仍然是2;3-2=1,1<5,所以当前的最大收益仍然是5:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_32


以此类推,我们一直遍历到数组末尾,此时的最小价格是1;最大收益是8-1=7:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_33

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_34

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_35


public class StockProfit {

    public static int maxProfitFor1Time(int prices[]) {
        if(prices==null || prices.length==0) {
            return 0;
        }
        int minPrice = prices[0];
        int maxProfit = 0;
        for (int i = 1; i < prices.length; i++) {
            if (prices[i] < minPrice) {
                minPrice = prices[i];
            } else if(prices[i] - minPrice > maxProfit){
                maxProfit = prices[i] - minPrice;
            }
        }
        return maxProfit;
    }

    public static void main(String[] args) {
        int[] prices = {9,2,7,4,3,1,8,4};
        System.out.println(maxProfitFor1Time(prices));
    }

}

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_36

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_37

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_38

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_39

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_40

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_41


我们以下图这个数组为例,直观地看一下买入卖出的时机:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_42


在图中,绿色的线段代表价格上涨的阶段。既然买卖次数不限,那么我们完全可以在每一次低点都进行买入,在每一次高点都进行卖出。


这样一来,所有绿色的部分都是我们的收益,最大总收益就是这些局部收益的加总:


(6-1)+(8-3)+(4-2)+(7-4) = 15


至于如何判断出这些绿色上涨阶段呢?很简单,我们遍历整个数组,但凡后一个元素大于前一个元素,就代表股价处于上涨阶段。

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_43


    public int maxProfitForAnyTime(int[] prices) {
        int maxProfit = 0;
        for (int i = 1; i < prices.length; i++) {
            if (prices[i] > prices[i-1])
                maxProfit += prices[i] - prices[i-1];
        }
        return maxProfit;
    }

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_44

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_45

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_46

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_47

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_48


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_49


我们仍然以之前的数组为例:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_50


首先,寻找到1次买卖限制下的最佳买入卖出点:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_51

两次买卖的位置是不可能交叉的,所以我们找到第1次买卖位置后,把这一对买入卖出点以及它们中间的元素全部剔除掉:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_52


接下来,我们按照同样的思路,再从剩下的元素中寻找第2次买卖的最佳买入卖出点:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_53

这样一来,我们就找到了最多2次买卖情况下的最佳选择:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_54

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_55

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_56

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_57

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_58


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_59


对于上图的这个数组,如果独立两次求解,得到的最佳买入卖出点分别是【1,9】和【6,7】,最大收益是 (9-1)+(7-6)=9:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_60

但实际上,如果选择【1,8】和【3,9】,最大收益是(8-1)+(9-3)=13>9:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_61

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_62

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_63


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_64


当第1次最佳买入卖出点确定下来,第2次买入卖出点的位置会有哪几种情况呢?


情况1:第2次最佳买入卖出点,在第1次买入卖出点左侧漫画:寻找股票买入卖出的最佳时机(整合版)_Java_65



情况2:第2次最佳买入卖出点,在第1次买入卖出点右侧


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_66

情况3:第1次买入卖出区间从中间截断,重新拆分成两次买卖


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_67


那么,如何判断给定的股价数组属于那种情况呢?很简单,在第1次最大买入卖出点确定后,我们可以比较一下哪种情况带来的收益增量最大:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_68


寻找左侧和右侧的最大涨幅比较好理解,寻找中间的最大跌幅有什么用呢?


细想一下就能知道,当第1次买卖需要被拆分开来的时候,买卖区间内的最大跌幅,就等同于拆分后的收益增量(类似于炒股的抄底操作):


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_69


这样一来,我们可以总结出下面的公式:


最大总收益 = 第1次最大收益 + Max(左侧最大涨幅,中间最大跌幅,右侧最大涨幅)

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_70

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_71


所谓动态规划,就是把复杂的问题简化成规模较小的子问题,再从简单的子问题自底向上一步一步递推,最终得到复杂问题的最优解。


首先,让我们分析一下当前这个股票买卖问题,这个问题要求解的是一定天数范围内、一定交易次数限制下的最大收益。


既然限制了股票最多买卖2次,那么股票的交易可以划分为5个阶段:


没有买卖

第1次买入

第1次卖出

第2次买入

第2次卖出


我们把股票的交易阶段设为变量m(用从0到4的数值表示),把天数范围设为变量n。而我们求解的最大收益,受这两个变量影响,用函数表示如下:


最大收益 = F(n,m)(n>=1,0<=m<=4


既然函数和变量已经确定,接下来我们就要确定动态规划的两大要素:


1.问题的初始状态
2.问题的状态转移方程式


问题的初始状态是什么呢?我们假定交易天数的范围只限于第1天,也就是n=1的情况:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_72


1.如果没有买卖,也就是m=0时,最大收益显然是0,也就是 F(1,0)= 0


2.如果有1次买入,也就是m=1时,相当于凭空减去了第1天的股价,最大收益是负的当天股价,也就是 F(1,1)= -price[0]


3.如果有1次买出,也就是m=2时,买卖抵消(当然,这没有实际意义),最大收益是0,也就是 F(1,2)= 0


4.如果有2次买入,也就是m=3时,同m=1的情况,F(1,3)= -price[0]


5.如果有2次卖出,也就是m=4时,同m=2的情况,F(1,4)= 0



确定了初始状态,我们再来看一看状态转移。假如天数范围限制从n-1天增加到n天,那么最大收益会有怎样的变化呢?


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_73

这取决于现在处于什么阶段(是第几次买入卖出),以及对第n天股价的操作(买入、卖出或观望)。让我们对各个阶段情况进行分析:


1.假如之前没有任何买卖,而第n天仍然观望,那么最大收益仍然是0,即 F(n,0) = 0


2.假如之前没有任何买卖,而第n天进行了买入,那么最大收益是负的当天股价,即 F(n,1)= -price[n-1]


3.假如之前有1次买入,而第n天选择观望,那么最大收益和之前一样,即 F(n,1)= F(n-1,1)


4.假如之前有1次买入,而第n天进行了卖出,那么最大收益是第1次买入的负收益加上当天股价,即那么 F(n,2)= F(n-1,1)+ price[n-1]


5.假如之前有1次卖出,而第n天选择观望,那么最大收益和之前一样,即 F(n,2)= F(n-1,2)


6.假如之前有1次卖出,而第n天进行2次买入,那么最大收益是第1次卖出收益减去当天股价,即F(n,3)= F(n-1,2) - price[n-1]


7.假如之前有2次买入,而第n天选择观望,那么最大收益和之前一样,即 F(n,3)= F(n-1,3)


8.假如之前有2次买入,而第n天进行了卖出,那么最大收益是第2次买入收益减去当天股价,即F(n,4)= F(n-1,3) + price[n-1]


9.假如之前有2次卖出,而第n天选择观望(也只能观望了),那么最大收益和之前一样,即 F(n,4)= F(n-1,4)


最后,我们把情况【2,3】,【4,5】,【6、7】,【8,9】合并,可以总结成下面的5个方程式:


F(n,0) = 0

F(n,1)=  max(-price[n-1],F(n-1,1)

F(n,2)=  max(F(n-1,1)+ price[n-1],F(n-1,2)

F(n,3)=  max(F(n-1,2)- price[n-1],F(n-1,3)

F(n,4)=  max(F(n-1,3)+ price[n-1],F(n-1,4)


从后面4个方程式中,可以总结出每一个阶段最大收益和上一个阶段的关系:


F(n,m) = max(F(n-1,m-1)+ price[n-1],F(n-1,m))


由此我们可以得出,完整的状态转移方程式如下:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_74

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_75


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_76

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_77


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_78


在表格中,不同的行代表不同天数限制下的最大收益,不同的列代表不同买卖阶段的最大收益。


我们仍然利用之前例子当中的数组,以此为基础来填充表格:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_59


首先,我们为表格填充初始状态:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_80


接下来,我们开始填充第2行数据。


没有买卖时,最大收益一定为0,因此F(2,0)的结果是0:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_81


根据之前的状态转移方程式,F(2,1)= max(F(1,0)-2,F(1,1))= max(-2,-1)= -1,所以第2行第2列的结果是-1:漫画:寻找股票买入卖出的最佳时机(整合版)_Java_82




F(2,2)= max(F(1,1)+2,F(1,2))= max(1,0)= 1,所以第2行第3列的结果是1:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_83


F(2,3)= max(F(1,2)-2,F(1,3))= max(-2,-1)= -1,所以第2行第4列的结果是-1:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_84


F(2,4)= max(F(1,3)+2,F(1,4))= max(1,0)= 1,所以第2行第5列的结果是1:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_85


接下来我们继续根据状态转移方程式,填充第3行的数据:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_86


接下来填充第4行:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_87


以此类推,我们一直填充完整个表格:


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_88


如图所示,表格中最后一个数据13,就是全局的最大收益。

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_89

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_90


    //最大买卖次数
    private static int MAX_DEAL_TIMES = 2;

    public static int maxProfitFor2Time(int[] prices) {
        if(prices==null || prices.length==0) {
            return 0;
        }
        //表格的最大行数
        int n = prices.length;
        //表格的最大列数
        int m = MAX_DEAL_TIMES*2+1;
        //使用二维数组记录数据
        int[][] resultTable = new int[n][m];
        //填充初始状态
        resultTable[0][1] = -prices[0];
        resultTable[0][3] = -prices[0];
        //自底向上,填充数据
        for(int i=1;i<n;++i) {
            for(int j=1;j<m;j++){
                if((j&1) == 1){
                    resultTable[i][j] = Math.max(resultTable[i-1][j], resultTable[i-1][j-1]-prices[i]);
                }else {
                    resultTable[i][j] = Math.max(resultTable[i-1][j], resultTable[i-1][j-1]+prices[i]);
                }
            }
        }
        //返回最终结果
        return resultTable[n-1][m-1];
    }

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_91

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_92

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_93

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_94

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_95

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_96


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_97


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_98

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_99


    //最大买卖次数
    private static int MAX_DEAL_TIMES = 2;

    public static int maxProfitFor2TimeV2(int[] prices) {
        if(prices==null || prices.length==0) {
            return 0;
        }
        //表格的最大行数
        int n = prices.length;
        //表格的最大列数
        int m = MAX_DEAL_TIMES*2+1;
        //使用一维数组记录数据
        int[] resultTable = new int[m];
        //填充初始状态
        resultTable[1] = -prices[0];
        resultTable[3] = -prices[0];
        //自底向上,填充数据
        for(int i=1;i<n;++i) {
            for(int j=1;j<m;j++){
                if((j&1) == 1){
                    resultTable[j] = Math.max(resultTable[j], resultTable[j-1]-prices[i]);
                }else {
                    resultTable[j] = Math.max(resultTable[j], resultTable[j-1]+prices[i]);
                }
            }
        }
        //返回最终结果
        return resultTable[m-1];
    }


在这段代码中,resultTable从二维数组简化成了一维数组。由于最大买卖次数是常量,所以算法的空间复杂度也从O(n)降低到了O(1)。


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_100

漫画:寻找股票买入卖出的最佳时机(整合版)_Java_101


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_102


    public static int maxProfitForKTime(int[] prices, int k) {
        if(prices==null || prices.length==0 || k<=0) {
            return 0;
        }
        //表格的最大行数
        int n = prices.length;
        //表格的最大列数
        int m = k*2+1;
        //使用一维数组记录数据
        int[] resultTable = new int[m];
        //填充初始状态
        for(int i=1;i<m;i+=2) {
            resultTable[i] = -prices[0];
        }
        //自底向上,填充数据
        for(int i=1;i<n;i++) {
            for(int j=1;j<m;j++){
                if((j&1) == 1){
                    resultTable[j] = Math.max(resultTable[j], resultTable[j-1]-prices[i]);
                }else {
                    resultTable[j] = Math.max(resultTable[j], resultTable[j-1]+prices[i]);
                }
            }
        }
        //返回最终结果
        return resultTable[m-1];
    }


漫画:寻找股票买入卖出的最佳时机(整合版)_Java_103