人 工 智 能 人工智能 人工智能




人工智能,我比较关注数学理论和工程架构


随着深入学习,语言的一般变换:python–>c++–>c,之后用于运用—>java/C#

在人工智能,一般到c++,就是研究算法底层了,到了c就是研究关于AI的操作系统的底层了


cv视觉方向,目前能有2-3篇顶会文章,在国内大概能拿100-150w


主流:ICCV、ECCV、CVPR、NIPS(一档),IJCAI、ICLR、AAAI(二档)
医学领域的主要有:MICCAI、Medical Image Analysis、IEEE Transactions on Medical Imaging、MIDL、IPMI;
数据挖掘领域:KDD;
自然语言处理:ACL、EMNLP、NAACL-HLT和COLING;


推荐学习资料:
神经网络基本原理简明教程

机器学习面试150题


  1. python
  2. 机器学习(基础版,明白基本原理,扫扫盲)
  3. 统计学习方法,西瓜书(我感觉,emmm,lj)
  4. 算法实践-机器学习(打打比赛,kaggle,要注意对树模型的应用,比如xgboost)
  5. 深度学习–(先扫盲吧)
  6. pytorch框架(tensorflow框架)
  7. 深度学习经典论文
  8. python经典web框架
  9. 大数据基础
  10. leetcode算法题
  11. 前面扎实了,就可以起飞了(前路漫漫,其修远兮)

推荐:
吴恩达的机器学习和深度学习可以用来扫扫盲,挺好的,大概看看,之后还可以回味回味


最难的是什么?是某个高深的算法吗?不不不!是死皮赖脸的坚持,总认为自己行,认为自己是人工智能方面的天才(实际是辣鸡)


找工作基础:

  1. leetcode(150-450道题)
  2. 百面机器学习—防止被问的不会(工业基础问题)
  3. 竞赛(某top)
  4. 实习(3-6月,某企业)
  5. 论文(某期刊)

面试题:
转载于

机器学习理论类:

1. 写出全概率公式&贝叶斯公式

人工智能_数据

2. 模型训练为什么要引入偏差(bias)和方差(variance)?

优化监督学习=优化模型的泛化误差,模型的泛化误差可分解为偏差、方差与噪声之和

Err = bias + var + irreducible error

,以回归任务为例,其实更准确的公式为:

Err = bias^2 + var + irreducible error^2

符号的定义:一个真实的任务可以理解为 Y=f(x)+e,其中 f(x)为规律部分,e 为噪声分

3. CRF/朴素贝叶斯/EM/最大熵模型/马尔科夫随机场/混合高斯模型

4. 如何解决过拟合问题?

5. One-hot的作用是什么?为什么不直接使用数字作为表示

6. 决策树和随机森林的区别是什么?

7. 朴素贝叶斯为什么“朴素naive”?

8. kmeans初始点除了随机选取之外的方法

9. LR明明是分类模型为什么叫回归

10. 梯度下降如何并行化

11. LR中的L1/L2正则项是啥

12. 简述决策树构建过程

13. 解释Gini系数

14. 决策树的优缺点

15. 出现估计概率值为 0 怎么处理

16. 随机森林的生成过程

17. 介绍一下Boosting的思想

18. gbdt的中的tree是什么tree?有什么特征

19. xgboost对比gbdt/boosting Tree有了哪些方向上的优化

20. 什么叫最优超平面

21. 什么是支持向量

22. SVM如何解决多分类问题

23. 核函数的作用是啥

特征工程类:

1. 怎么去除DataFrame里的缺失值?

2. 特征无量纲化的常见操作方法

3. 如何对类别变量进行独热编码?

4. 如何把“年龄”字段按照我们的阈值分段?

5. 如何根据变量相关性画出热力图?

6. 如何把分布修正为类正态分布?

7. 怎么简单使用PCA来划分数据且可视化呢?

8. 怎么简单使用LDA来划分数据且可视化呢?

深度学习类:

1. 你觉得batch-normalization过程是什么样的

2. 激活函数有什么用?常见的激活函数的区别是什么?

3. Softmax的原理是什么?有什么作用?CNN的平移不变性是什么?如何实现的?

4. VGG,GoogleNet,ResNet等网络之间的区别是什么?

5. 残差网络为什么能解决梯度消失的问题

6. LSTM为什么能解决梯度消失/爆炸的问题

7. Attention对比RNN和CNN,分别有哪点你觉得的优势

8. 写出Attention的公式

9. Attention机制,里面的q,k,v分别代表什么

10. 为什么self-attention可以替代seq2seq

自然语言处理(NLP)类:

1. GolVe的损失函数

2. 为什么GolVe会用的相对比W2V少

3. 层次softmax流程

4. 负采样流程

5. 怎么衡量学到的embedding的好坏

6. 阐述CRF原理

7. 详述LDA原理

8. LDA中的主题矩阵如何计算

9. LDA和Word2Vec区别?LDA和Doc2Vec区别

10. Bert的双向体现在什么地方

11. Bert的是怎样预训练的

12. 在数据中随机选择 15% 的标记,其中80%被换位[mask],10%不变、10%随机替换其他单词,原因是什么

13. 为什么BERT有3个嵌入层,它们都是如何实现的

14. 手写一个multi-head attention

推荐系统类:

1. DNN与DeepFM之间的区别

2. 你在使用deepFM的时候是如何处理欠拟合和过拟合问题的

3. deepfm的embedding初始化有什么值得注意的地方吗

4. YoutubeNet 变长数据如何处理的

5. YouTubeNet如何避免百万量级的softmax问题的

6. 推荐系统有哪些常见的评测指标?

7. MLR的原理是什么?做了哪些优化?

计算机视觉(CV)类:

1. 常见的模型加速方法

2. 目标检测里如何有效解决常见的前景少背景多的问题

3. 目标检测里有什么情况是SSD、YOLOv3、Faster R-CNN等所不能解决的,假设网络拟合能力无限强

4. ROIPool和ROIAlign的区别

5. 介绍常见的梯度下降优化方法

6. Detection你觉的还有哪些可做的点

7. mini-Batch SGD相对于GD有什么优点

8. 人体姿态估计主流的两个做法是啥?简单介绍下

9. 卷积的实现原理以及如何快速高效实现局部weight sharing的卷积操作方式

10. CycleGAN的生成效果为啥一般都是位置不变纹理变化,为啥不能产生不同位置的生成效果