概率论和数理统计
随机事件和概率
1.事件的关系与运算
(1) 子事件:,若发生,则发生。 Notes:是的子事件,
(2) 相等事件:,即,且
(3) 和事件:(或),与中至少有一个发生。 推广:若是互不相容的事件序列,则
(4) 差事件:,发生但不发生。
(5) 积事件:(或),与同时发生。
(6) 互斥事件(互不相容):=。
(7) 互逆事件(对立事件):
(8)
2.运算律
(1) 交换律:
(2) 结合律:
(3) 分配律:
3.德摩根律
4.完全事件组
两两互斥,且和事件为必然事件,即
5.概率的基本公式
(1)条件概率:
,表示发生的条件下,发生的概率。
(2)全概率公式:
如何推出? 条件概率变形,
(3) Bayes公式:
注:上述公式中事件的个数可为可列个。
(4)乘法公式:
6.事件的独立性
(1)与相互独立
(2),,两两独立
; ;;
(3),,相互独立
; ;
;
7.独立重复试验
将某试验独立重复次,若每次实验中事件A发生的概率为,则次试验中发生次的概率为:
8.重要公式与结论
(5)条件概率满足概率的所有性质,
例如:.
(6)若相互独立,则
(7)互斥、互逆与独立性之间的关系:
与互逆 与互斥,但反之不成立,与互斥(或互逆)且均非零概率事件$\Rightarrow $与不独立.
(8)若相互独立,则与也相互独立,其中分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.
随机变量及其概率分布
1.随机变量及概率分布
取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律
2.分布函数的概念与性质
定义:
性质:(1)
(2) 单调不减
(3) 右连续
(4)
3.离散型随机变量的概率分布
4.连续型随机变量的概率密度
概率密度;非负可积,且:
(1)
(2)
(3)为的连续点,则:
分布函数
5.常见分布
(1) 0-1分布:
(2) 二项分布::
(3) Poisson分布::
(4) 均匀分布:
(5) 正态分布:
(6)指数分布:
(7)几何分布:
(8)超几何分布:
6.随机变量函数的概率分布
(1)离散型:
则:
(2)连续型:
则:,
7.重要公式与结论
(1)
(2)
(3)
(4)
(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。
(6) 存在既非离散也非连续型随机变量。
多维随机变量及其分布
1.二维随机变量及其联合分布
由两个随机变量构成的随机向量, 联合分布为
2.二维离散型随机变量的分布
(1) 联合概率分布律
(2) 边缘分布律
(3) 条件分布律
3. 二维连续性随机变量的密度
(1) 联合概率密度
(2) 分布函数:
(3) 边缘概率密度:
(4) 条件概率密度:
4.常见二维随机变量的联合分布
(1) 二维均匀分布: ,
(2) 二维正态分布:,
5.随机变量的独立性和相关性
和的相互独立::
(离散型)
(连续型)
和的相关性:
相关系数时,称和不相关,
否则称和相关
6.两个随机变量简单函数的概率分布
离散型:
连续型:
则:
,
7.重要公式与结论
(1) 边缘密度公式:
(2)
(3) 若服从二维正态分布
则有:
- 与相互独立,即与不相关。
- 关于的条件分布为:
- 关于的条件分布为:
(4) 若与独立,且分别服从
则:
(5) 若与相互独立,和为连续函数, 则和也相互独立。
6.随机变量函数的数学期望
(1) 对于函数
为离散型:;
为连续型:
(2) ;; ;
7.协方差
8.相关系数
,阶原点矩 ;
阶中心矩
性质:
(1)
(2)
(3)
(4)
(5) ,其中
,其中
9.重要公式与结论
(1)
(2)
(3) 且 ,其中
,其中
(4) 下面5个条件互为充要条件:
注:与独立为上述5个条件中任何一个成立的充分条件,但非必要条件。
数理统计的基本概念
1.基本概念
总体:研究对象的全体,它是一个随机变量,用表示。
个体:组成总体的每个基本元素。
简单随机样本:来自总体的个相互独立且与总体同分布的随机变量,称为容量为的简单随机样本,简称样本。
统计量:设是来自总体的一个样本,)是样本的连续函数,且中不含任何未知参数,则称为统计量。
样本均值:
样本方差:
样本矩:样本阶原点矩:
样本阶中心矩:
2.分布
分布:,其中相互独立,且同服从
分布: ,其中且,
分布:,其中且,相互独立。
分位数:若则称为的分位数
3.正态总体的常用样本分布
(1) 设为来自正态总体的样本,
则:
- 或者
4)
4.重要公式与结论
(1) 对于,有
(2) 对于,有;
(3) 对于,有
(4) 对于任意总体,有