让我们看一个经济学的例子:假设你想购买一定数量q的特定产品。如果单价是p,那么你会支付总金额y。这是一个线性关系的典型例子。总价格和数量成正比。 

 

如下所示:

拟合R语言中的多项式回归_编程开发

但购买和出售,我们可能要考虑一些其他相关信息,就像如果购买大量商品时我们很可能要求获得折扣,或出售更重要的商品时我们可能会提高价格。

最后可能是这样的情况,总成本不再是数量的线性函数:

拟合R语言中的多项式回归_R语言_02

 

通过多项式回归,我们可以将n阶模型拟合到数据上,并尝试对非线性关系进行建模。

如何拟合多项式回归

这是我们模拟观测数据的图。模拟的数据点是蓝色的点,而红色的线是信号(信号是一个技术术语,通常用于表示我们感兴趣检测的总体趋势)。

 

拟合R语言中的多项式回归_编程开发_03

让我们用R来拟合。当拟合多项式时,您可以使用

 lm(noisy.y~poly(q,3))

通过使用confint()函数,我们可以获得我们模型参数的置信区间。

模型参数的置信区间:

confint(model,level = 0.95)

拟合vs残差图

拟合R语言中的多项式回归_R语言_04

总的来说,这个模型似乎很适合,因为R的平方为0.8。正如我们所预期的那样,一阶和三阶项的系数在统计上显着。

预测值和置信区间 

将线添加到现有图中:

拟合R语言中的多项式回归_编程开发_05

我们可以看到,我们的模型在拟合数据方面做得不错。

 

 


参考文献

拟合R语言中的多项式回归_编程开发_06

1.R语言多元Logistic逻辑回归 应用案例

2.面板平滑转移回归(PSTR)分析案例实现

3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)

4.R语言泊松Poisson回归模型分析案例

5.R语言回归中的Hosmer-Lemeshow拟合优度检验

6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

7.在R语言中实现Logistic逻辑回归

8.python用线性回归预测股票价格

9.R语言如何在生存分析与Cox回归中计算IDI,NRI指标