15年在某电商从0设计了一个通用的API监控系统,当时只是计算了成功率+平均耗时,没有算75,90,95,99,999,9999线,这次单位需要,所以促使我去思考这个问题,问了单位CAT维护人员,大致了解了计算方式,跟我在18年7月份在单位内网BBS发表的文章思路是一致的,所以就直接写了下面的代码PercentageCalculation.javapackage com.ymm.comp
HBase的构成物理上来说,HBase是由三种类型的服务器以主从模式构成的。这三种服务器分别是:Region server,HBase HMaster,ZooKeeper。其中Region server负责数据的读写服务。用户通过沟通Region server来实现对数据的访问。HBase HMaster负责Region的分配及数据库的创建和删除等操作。ZooKeeper作为HDFS的一部分,负责
Lambda架构说起来也很简单,就是通过分布式系统的组件搭建,设计出一个具有鲁棒性,可扩展,低延时的分布式计算系统。之所以称之为Lambda架构,就是它最为核心的点就是理由了数据处理过程之中的不可变性与无依赖性。Lambda架构说起来也很简单,就是通过分布式系统的组件搭建,设计出一个具有鲁棒性,可扩展,低延时的分布式计算系统。之所以称之为Lambda架构,就是它最为核心的点就是理由了数据处理过程之
Spark是基于内存的大数据综合处理引擎,具有优秀的作业调度机制和快速的分布式计算能力,使其能够更加高效地进行迭代计算,因此Spark能够在一定程度上实现大数据的流式处理。随着信息技术的迅猛发展,数据量呈现出爆炸式增长趋势,数据的种类与变化速度也远远超出人们的想象,因此人们对大数据处理提出了更高的要求,越来越多的领域迫切需要大数据技术来解决领域内的关键问题。在一些特定的领域中(例如金融、灾害预警等
018年接近尾声,我018年接近尾声,我策划了“解读2018”年终技术盘点系列文章,希望能够给读者清晰地梳理出重要技术领域在这一年来的发展和变化。本文是实时流计算2018年终盘点,作者对实时流计算技术的发展现状进行了深入剖析,并对当前大火的各个主流实时流计算框架做了全面、客观的对比,同时对未来流计算可能的发展方向进行预测和展望。策划了“解读2018”年终技术盘点系列文章,希望能够给读者清晰地梳理出
今年,实时流计算技术开始步入主流,各大厂都在不遗余力地试用新的流计算框架,实时流计算引擎和API诸如SparkStreaming、KafkaStreaming、Beam和Flink持续火爆。阿里巴巴自2015年开始改进Flink,并创建了内部分支Blink,目前服务于阿里集团内部搜索、推荐、广告和蚂蚁等大量核心实时业务。12月20日,由阿里巴巴承办的FlinkForwardChina峰会在北京国家
内存不足是项目开发过程中经常碰到的问题,我和我的团队在之前的一个项目中也遇到了这个问题,我们的项目需要存储和处理一个相当大的动态列表,测试人员经常向我抱怨内存不足。但是最终,我们通过添加一行简单的代码解决了这个问题。结果如图所示:我将在下面解释它的工作原理。举一个简单的“learning”示例-创建一个DataItem类,在其中定义一些个人信息属性,例如姓名,年龄和地址。小测试——这样一个对象会占
Hadoop与Kubernetes就好像江湖里的两大绝世高手,一个是成名已久的长者,至今仍然名声远扬,一个则是初出茅庐的青涩少年,骨骼惊奇,不走寻常路,一出手便惊诧了整个武林。Hadoop与Kubernetes之间有很深的渊源,因为都出自IT豪门——Google,只不过,后者是亲儿子,正因为有大佬背书,所以Kubernetes一出山,江湖各路门派便都蜂拥而至,拥护称王。不知道是因为Hadoop是干
大数据这个词也许几年前你听着还会觉得陌生,但我相信你现在听到hadoop这个词的时候你应该都会觉得“熟悉”!越来越发现身边从事hadoop开发或者是正在学习hadoop的人变多了。作为一个hadoop入门级的新手,你会觉得哪些地方很难呢?运行环境的搭建恐怕就已经足够让新手头疼。如果每一个发行版hadoop都可以做到像大快DKHadoop那样把各种环境搭建集成到一起,一次安装搞定所有,那对于新手来说
最近一段时间一直在接触关于hadoop方面的内容,从刚接触时的一片空白,到现在也能够说清楚一些问题。这中间到底经历过什么只怕也就是只有经过的人才会体会到吧。前几天看到有个人问“学hadoop需要什么基础”,这个问题好像至今还没好好细想过,可能是因为身边有大神在带着我学习hadoop的缘故,也就没想过这样的一个简单的问题。我们目前在用的hadoop版本并不是原生态的版本,我们在用的是国内的一款商业发
企业架构是一个能够使组织标准化并组织IT基础架构来与业务目标保持一致的过程。以下的这些战略可用于支持企业的数字化转型,IT发展以及IT部门的现代化。什么是企业架构?企业架构(EA)是一个分析、设计、规划和实施企业分析以成功执行业务战略的实践。EA用于帮助企业构建IT项目和策略,以实现期望的业务结果,并使用体系结构原则和实践来掌握行业趋势和中断的风险,这个过程也称为企业体系结构规划(enterpri
大数据
大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星。我们暂不去讨论大数据到底是否适用于您的公司或组织,至少在互联网上已经被吹嘘成无所不能的超级战舰。大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星。我们暂不去讨论大数据到底是否适用于您的公司或组织,至少在互联网上已经被吹嘘成无所不能的超级战舰。好像一夜之间我们就从互联网时代跳跃进了大数据时代!关于到底什么是大数
商业发行版主要是提供了更为专业的技术支持,这对于大型企业更为重要,不同发行版都有自己的一些特点,本文就各发行版做简单对比介绍。对比版选择:DKhadoop发行版、cloudera发行版、hortonworks发行版、MAPR发行版、华为hadoop发行版Hadoop是一个能够对大量数据进行分布式处理的软件框架。Hadoop以一种可靠、高效、可伸缩的方式进行数据处理。Hadoop的发行版除了有Apa
本节作为《Hadoop从入门到精通》大型专题的第三章第二节将教大家如何在Mapreduce中使用XML和JSON两大常见格式,并分析比较最适合Mapreduce大数据处理的数据格式。在本章的第一章节介绍中,我们简单了解了Mapreduce数据序列化的概念,以及其对于XML和JSON格式并不友好。本节作为《Hadoop从入门到精通》大型专题的第三章第二节将教大家如何在Mapreduce中使用XML和
SparkStreaming支持实时数据流的可扩展(Scalable)、高吞吐(high-throughput)、容错(fault-tolerant)的流处理(streamprocessing)。SparkStreaming支持实时数据流的可扩展(Scalable)、高吞吐(high-throughput)、容错(fault-tolerant)的流处理(streamprocessing)。架构图特
Copyright © 2005-2024 51CTO.COM 版权所有 京ICP证060544号