什么是inode?
inode是Linux/Unix系文件系统[如ext]中的一个概念,当一个文件系统格式化了以后,他一定会有 inode table 与 data area 两个区块。Block 是记录文件内容数据的地区,而 inode 则是记录该文件的属性、及该文件放置在哪一个 Block 之内的信息。而且每个文件至少需要一个inode。
如何查询一个文件系统的inode使用情况:
Filesystem            Inodes   IUsed   IFree IUse% Mounted on
/dev/sda1            2366400  186064 2180336    8% /
none                   63327       1   63326    1% /dev/shm
使用df -i可以看到文件系统的inode总数、使用数、剩余量和使用百分比。
如何查看每个文件系统的inode大小:定义inode大小:
 
 
[root@gc_server ~]# dumpe2fs -h /dev/sda1|grep node
dumpe2fs 1.35 (28-Feb-2004)
Filesystem features:      has_journal ext_attr resize_inode dir_index filetype needs_recovery sparse_super large_file
Inode count:              2366400
Free inodes:              2177496
Inodes per group:         16320
Inode blocks per group:   510
First inode:              11
Inode size:               128
Journal inode:            8
First orphan inode:       150509
Journal backup:           inode blocks
 
 
 
inode大小决定了一个文件系统中的inode总量,在创建文件系统的时候可以指定inode的大小,创建之后不可修改:
mkfs.ext3 -I 128 /dev/sdb5   //自定inode的大小为128byte
inode会引起什么问题:
可能出现磁盘空闲空间充足的情况下,新建文件时提示磁盘空间满。

inode数量过多由什么引起:
一般是小文件过多,如果一个文件大小比文件系统的块大小还小,如文件系统的block size为4k,而文件只有2k,则有2k的空间被浪费,也就是blocks per inode ratio过小,从而有可能会出现磁盘空间未满,而inode数消耗殆尽的情况。
如何规划:
因为inode大小一般而言略大于block大小为宜,所以:

1、 当 block 越小、inodes 越多,可利用空间越多,但是大文件写入效率较差:适合文件数量多但是文件容量小的系统,例如 BBS 或者新闻群组 news 这方面的服务之系统;
2、 当 block 越大 、 inodes 数越少,大文件写入效率较佳,但浪费的空间较多:适合文件容量大的系统。
IO调度器
IO调度器的总体目标是希望让磁头能够总是往一个方向移动,移动到底了再往反方向走,这恰恰就是现实生活中的电梯模型,所以IO调度器也被叫做电梯.(elevator)而相应的算法也就被叫做电梯算法.而Linux中IO调度的电梯算法有好几种,一个叫做as(Anticipatory),一个叫做cfq(Complete Fairness Queueing),一个叫做deadline,还有一个叫做noop(No Operation).具体使用哪种算法我们可以在启动的时候通过内核参数elevator来指定.

另一方面我们也可以单独的为某个设备指定它所采用的IO调度算法,这就通过修改在/sys/block/sda/queue/目录下面的scheduler文件.比如我们可以先看一下我的这块硬盘:
[root@localhost ~]# cat /sys/block/sda/queue/scheduler
noop anticipatory deadline [cfq]
可以看到我们这里采用的是cfq.
Linux IO调度器相关算法介绍
IO调度器(IO Scheduler)是操作系统用来决定块设备上IO操作提交顺序的方法。存在的目的有两个,一是提高IO吞吐量,二是降低IO响应时间。然而IO吞吐量和IO响应时间往往是矛盾的,为了尽量平衡这两者,IO调度器提供了多种调度算法来适应不同的IO请求场景。其中,对数据库这种随机读写的场景最有利的算法是DEANLINE。接着我们按照从简单到复杂的顺序,迅速扫一下Linux 2.6内核提供的几种IO调度算法。
1、NOOP

NOOP算法的全写为No Operation。该算法实现了最最简单的FIFO队列,所有IO请求大致按照先来后到的顺序进行操作。之所以说“大致”,原因是NOOP在FIFO的基础上还做了相邻IO请求的合并,并不是完完全全按照先进先出的规则满足IO请求。
假设有如下的io请求序列:
100,500,101,10,56,1000
NOOP将会按照如下顺序满足:
100(101),500,10,56,1000
2、CFQ

CFQ算法的全写为Completely Fair Queuing。该算法的特点是按照IO请求的地址进行排序,而不是按照先来后到的顺序来进行响应。
假设有如下的io请求序列:
100,500,101,10,56,1000
CFQ将会按照如下顺序满足:
100,101,500,1000,10,56
在传统的SAS盘上,磁盘寻道花去了绝大多数的IO响应时间。CFQ的出发点是对IO地址进行排序,以尽量少的磁盘旋转次数来满足尽可能多的IO请求。在CFQ算法下,SAS盘的吞吐量大大提高了。但是相比于NOOP的缺点是,先来的IO请求并不一定能被满足,可能会出现饿死的情况。
3、DEADLINE

DEADLINE在CFQ的基础上,解决了IO请求饿死的极端情况。除了CFQ本身具有的IO排序队列之外,DEADLINE额外分别为读IO和写IO提供了FIFO队列。读FIFO队列的最大等待时间为500ms,写FIFO队列的最大等待时间为5s。FIFO队列内的IO请求优先级要比CFQ队列中的高,,而读FIFO队列的优先级又比写FIFO队列的优先级高。优先级可以表示如下:
FIFO(Read) > FIFO(Write) > CFQ
4、ANTICIPATORY

CFQ和DEADLINE考虑的焦点在于满足零散IO请求上。对于连续的IO请求,比如顺序读,并没有做优化。为了满足随机IO和顺序IO混合的场景,Linux还支持ANTICIPATORY调度算法。ANTICIPATORY的在DEADLINE的基础上,为每个读IO都设置了6ms的等待时间窗口。如果在这6ms内OS收到了相邻位置的读IO请求,就可以立即满足。
IO调度器算法的选择,既取决于硬件特征,也取决于应用场景。

在传统的SAS盘上,CFQ、DEADLINE、ANTICIPATORY都是不错的选择;对于专属的数据库服务器,DEADLINE的吞吐量和响应时间都表现良好。然而在新兴的固态硬盘比如SSD、Fusion IO上,最简单的NOOP反而可能是最好的算法,因为其他三个算法的优化是基于缩短寻道时间的,而固态硬盘没有所谓的寻道时间且IO响应时间非常短。
查看和修改IO调度器的算法非常简单。假设我们要对sda进行操作,如下所示:
cat /sys/block/sda/queue/scheduler
echo “cfq” > /sys/block/sda/queue/scheduler