NIPS-2018最新前沿人工智能论文分享_机器学习

    NIPS(现称NeurIPS),全称神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行,由NIPS基金会主办。NIPS是机器学习领域的顶级会议 。在中国计算机学会的国际学术会议排名中,NIPS为人工智能领域的A类会议。

    目前,NIPS-2018,即第32届年NIPS会于2018年12月2日至8日在加拿大蒙特利尔会议中心举行。会议流程安排如下:

NIPS-2018最新前沿人工智能论文分享_机器学习_02


NIPS-2018主页

​https://nips.cc/Conferences/2018/Dates​


    分享由 S. Bengio、H. Wallach、H. Larochelle和K. Grauman等人整理的NIPS-2018会议的论文列表。

    文末附论文完整且带链接版地址。


论文TOP列表

    1· Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization Francis Bach


    2· Structure-Aware Convolutional Neural Networks Jianlong Chang, Jie Gu, Lingfeng Wang, GAOFENG MENG, SHIMING XIANG, Chunhong Pan


    3· Kalman Normalization: Normalizing Internal Representations Across Network Layers Guangrun Wang, jiefeng peng, Ping Luo, Xinjiang Wang, Liang Lin


    4· HOGWILD!-Gibbs can be PanAccurate Constantinos Daskalakis, Nishanth Dikkala, Siddhartha Jayanti


    5· Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language Seonghyeon Nam, Yunji Kim, Seon Joo Kim


    6· IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis Huaibo Huang, zhihang li, Ran He, Zhenan Sun, Tieniu Tan


    7· Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with \beta-Divergences Jeremias Knoblauch, Jack E. Jewson, Theodoros Damoulas


    8· Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning Tyler Scott, Karl Ridgeway, Michael C. Mozer


    9· Generalized Inverse Optimization through Online Learning Chaosheng Dong, Yiran Chen, Bo Zeng

    

    10· An Off-policy Policy Gradient Theorem Using Emphatic Weightings Ehsan Imani, Eric Graves, Martha White


    11· Supervised autoencoders: Improving generalization performance with unsupervised regularizers Lei Le, Andrew Patterson, Martha White


    12· Visual Object Networks: Image Generation with Disentangled 3D Representations Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Josh Tenenbaum, Bill Freeman


    13· Understanding Weight Normalized Deep Neural Networks with Rectified Linear Units Yixi Xu, Xiao Wang


    14· Learning Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics Problems Mrinmaya Sachan, Kumar Avinava Dubey, Tom M. Mitchell, Dan Roth, Eric P. Xing


    15· Learning long-range spatial dependencies with horizontal gated recurrent units Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, Thomas Serre


    16· Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution Zhisheng Zhong, Tiancheng Shen, Yibo Yang, Zhouchen Lin, Chao Zhang


    17· Fast Similarity Search via Optimal Sparse Lifting Wenye Li, Jingwei Mao, Yin Zhang, Shuguang Cui


    18· Learning Deep Disentangled Embeddings With the F-Statistic Loss Karl Ridgeway, Michael C. Mozer


    19· Geometrically Coupled Monte Carlo Sampling Mark Rowland, Krzysztof M. Choromanski, François Chalus, Aldo Pacchiano, Tamas Sarlos, Richard E. Turner, Adrian Weller


    20· Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu


    21· An Efficient Pruning Algorithm for Robust Isotonic Regression Cong Han Lim


    22· PAC-learning in the presence of adversaries Daniel Cullina, Arjun Nitin Bhagoji, Prateek Mittal


    23· Sparse DNNs with Improved Adversarial Robustness Yiwen Guo, Chao Zhang, Changshui Zhang, Yurong Chen


    24· Snap ML: A Hierarchical Framework for Machine Learning Celestine Dünner, Thomas Parnell, Dimitrios Sarigiannis, Nikolas Ioannou, Andreea Anghel, Gummadi Ravi, Madhusudanan Kandasamy, Haralampos Pozidis


    25· See and Think: Disentangling Semantic Scene Completion Shice Liu, YU HU, Yiming Zeng, Qiankun Tang, Beibei Jin, Yinhe Han, Xiaowei Li


    26· Chain of Reasoning for Visual Question Answering Chenfei Wu, Jinlai Liu, Xiaojie Wang, Xuan Dong


    27· Sigsoftmax: Reanalysis of the Softmax Bottleneck Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, Shuichi Adachi


    28· Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, Wangmeng Zuo, Wei Liu, Ming-Hsuan Yang


    29· Probabilistic Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC Tolga Birdal, Umut Simsekli, Mustafa Onur Eken, Slobodan Ilic


    30· MetaAnchor: Learning to Detect Objects with Customized Anchors Tong Yang, Xiangyu Zhang, Zeming Li, Wenqiang Zhang, Jian Sun


    31· Image Inpainting via Generative Multi-column Convolutional Neural Networks Yi Wang, Xin Tao, Xiaojuan Qi, Xiaoyong Shen, Jiaya Jia


    32· On Misinformation Containment in Online Social Networks Amo Tong, Ding-Zhu Du, Weili Wu

· A^2-Nets: Double Attention Networks Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, Jiashi Feng


    33· Self-Supervised Generation of Spatial Audio for 360° Video Pedro Morgado, Nuno Nvasconcelos, Timothy Langlois, Oliver Wang


    34· How Many Samples are Needed to Estimate a Convolutional Neural Network? Simon S. Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan R. Salakhutdinov, Aarti Singh


    35· Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced Simon S. Du, Wei Hu, Jason D. Lee


    36· Optimization for Approximate Submodularity Yaron Singer, Avinatan Hassidim


    37· (Probably) Concave Graph Matching Haggai Maron, Yaron Lipman


    38· Deep Defense: Training DNNs with Improved Adversarial Robustness Ziang Yan, Yiwen Guo, Changshui Zhang


    39· Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart Schemes Junqi Tang, Mohammad Golbabaee, Francis Bach, Mike E. davies


    40· Implicit Reparameterization Gradients Mikhail Figurnov, Shakir Mohamed, Andriy Mnih

· Training DNNs with Hybrid Block Floating Point Mario Drumond, Tao LIN, Martin Jaggi, Babak Falsafi


    41· A Model for Learned Bloom Filters and Optimizing by Sandwiching Michael Mitzenmacher


    42· Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis Haoye Dong, Xiaodan Liang, Ke Gong, Hanjiang Lai, Jia Zhu, Jian Yin

    

    43· Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from Functions Minhyuk Sung, Hao Su, Ronald Yu, Leonidas J. Guibas


    44· Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling Yunzhe Tao, Qi Sun, Qiang Du, Wei Liu


    45· Are ResNets Provably Better than Linear Predictors? Ohad Shamir


    46· Learning to Decompose and Disentangle Representations for Video Prediction Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F. Fei-Fei, Juan Carlos Niebles


    47· Multi-Task Learning as Multi-Objective Optimization Ozan Sener, Vladlen Koltun


    48· Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search Zhuwen Li, Qifeng Chen, Vladlen Koltun


    49· Self-Erasing Network for Integral Object Attention Qibin Hou, PengTao Jiang, Yunchao Wei, Ming-Ming Cheng


    50· LinkNet: Relational Embedding for Scene Graph Sanghyun Woo, Dahun Kim, Donghyeon Cho, In So Kweon

论文完整版列表

    微信公众号“深度学习与NLP”回复关键字“NIPS18”获取

    在线地址:

​https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018​


NIPS-2018最新前沿人工智能论文分享_深度学习_03