特征提取由于ORB-SLAM系列和相关论文的影响,ORB这种特征变得非常流行,它运行速度非常的快,我在比较好算力的台式机上从图片提取ORB特征并建立描述子需要8ms左右。那么ORB中有那些操作呢?ComputePyramid(image);ComputeKeyPointsOctTree(allKeypoints);_descriptors.create(nkeypoints, 32, CV_8U)
1.1 Octave是什么?
Octave是一款用于数值计算和绘图的开源软件。和Matlab一样,Octave尤其精于矩阵运算:求解联立方程组、计算矩阵特征值和特征向量等等。在许多的工程实际问题中,数据都可以用矩阵或向量表示出来而问题转化为对这类矩阵的求解。另外,Octave能够通过多种形式将数据可视化,并且Octave本身也是一门编程语言而易于扩展。因此我们可以称Octave是一款非常强大的可编
转载
2023-12-09 14:03:48
116阅读
特征值特征向量在机器视觉中很重要,很基础,学了这么多年数学一直不理解特征值特征向量到底表达的物理意义是什么,在人工智能领域到底怎么用他们处理数据,当然笔者并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式进行解释。 在数学上,特别是线性代数中,对于一个给定的线性变换,它的特征向量(eigenvector,也译固有向量或本征向量) 经过这个线性变换之后,得到的新向量仍然与原
转载
2023-10-12 11:29:50
153阅读
Greeting!特征值与特征向量是大学线性代数与统计学课程里的内容,当年强背了过去,并没有真正理解过这个问题。为了以后学习统计学习方法更方便,在此记录下学习文章以加深理解。(个人观点,如有错漏请提出)抽象理解特征值(eigenvalue)和特征向量(eigenvector)具有共同前缀 eigen- ,其起源于德语,意为“特征”。首先我们应该充分理解“特征”的含义:对于线性代数而言
先给出结论:简易版:首先列出代价函数,其中X,Y,θ是向量或者矩阵。接下来我们要对代价函数Ĵ中预测值与真实值的差的平方的累加进行求导。首先第一步,消除累加。简单来复习一下现代知识:假设向量,则 * = 知道如何消去累加之后再将式子做进一步化简: 好了现在终于把原式子化简完成,接下来就要进行求导了。大家应该都知道多项式求导等于对各项求导相加。 我们将上式对θ求导:第一项:是一个标量,所以是标量对向
转载
2024-02-08 06:01:46
27阅读
什么是特征根(值)和特征向量?如果把矩阵看作是运动,对于运动而言,最重要的当然就是运动的速度和方向。特征值就是运动的速度特征向量就是运动的方向特征根:特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。称为二阶齐次线性差分方程: 加权的特征方程。特征向量: A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值
转载
2023-06-21 09:24:47
95阅读
幂法求特征向量的过程在许多应用领域中尤其重要,尤其是在需要解线性代数问题的时候。本文将详细描述使用Python实现幂法求特征向量的完整过程,包括问题背景、错误现象、根因分析、解决方案、验证测试和预防优化。
## 问题背景
在机器学习、数据科学和工程计算中,特征向量的计算是至关重要的。假设我们面临的场景是,一个数据科学家需要从一个大型矩阵中提取特征向量,以便进行后续的分析和建模。数据科学团队正在
特征值和特征向量(Eigenvalues and eigenvectors)在线性代数中,一个线性变换的特征向量(eigenvector 或者 characteristic vector)是一个非零向量。将线性变换应用在它上面,它最多以一个标量因子进行伸缩变换。特征向量缩放的因子叫做特征值,记为 几何上,一个特征向量,对应于一个实非零特征值,指向它被变换拉伸的方向,特征值是它被拉伸的因子。如果特征
转载
2024-04-16 22:24:26
248阅读
Matlab 求左右特征向量例:求下列矩阵的特征值和左右特征向量L=[2−1−1
原创
2021-08-10 15:12:24
565阅读
Matlab 求左右特征向量例:求下列矩阵的特征值和左右特征向量L=[2−1−101−1−101]L = \left[\begin{matrix}-
原创
2022-04-18 17:36:50
360阅读
如果把矩阵看作是运动,对于运动而言,最重要的当然就是运动的速度和方向,特征值就是运动的速度,特征向量就是运动的方向 参考链接:https://www.zhihu.com/question/21874816/answer/181864044因为特征向量决定了方向,所以特征方程的意义如下图所示:在求特征值中的齐次线性方程中的0是0矩阵而不是标量0,这个可通过矩阵乘法的shape变换来证明。然后因为是方
转载
2024-01-16 21:50:25
173阅读
# Python中QR迭代法求特征值和特征向量
在科学和工程计算中,特征值和特征向量是相当重要的概念。它们在量子力学、系统控制、数据分析等领域有着广泛的应用。本篇文章将介绍QR迭代法,这是一种有效的计算矩阵特征值和特征向量的算法,同时提供完整的Python实现示例。
## QR迭代法简介
QR迭代算法是求解矩阵特征值的有效方法。其基本思路是,将一个矩阵分解为正交矩阵Q和上三角矩阵R,然后将R
特征值和特征向量一直是我最疑惑的一个地方,虽然知道如何计算,但是一直不懂他所代表的意义,今天就来揭开他神秘的面纱!特征值和特征向量我们先来看一个线性变换的矩阵,并且考虑他所张成的空间,也就是过原点和向量尖端的直线:在这个变换中,绝大部分的向量都已经离开了它们张成的空间,但是某些特殊向量的确留在它们张成的空间里,意味着矩阵对他的作用只是拉伸或者压缩而已,如同一个标量。如果一个向量留在它们张成的空间里
转载
2024-01-30 06:38:02
196阅读
一、特征值和特征向量的几何意义 特征值和特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。 那么变换的效果是什么呢?这当然与方阵的构造有密切的关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维变量逆时针旋
转载
2024-07-31 18:38:08
80阅读
文章目录root_scalar参数差异测试 root_scalar方程的根就是函数的零点,scipy.optimize提供了统一的一元函数求根方法,其函数定义为scipy.optimize.root_scalar(f, args=(), method=None, bracket=None, fprime=None, fprime2=None, x0=None, x1=None, xtol=Non
转载
2023-09-01 22:44:47
255阅读
本篇为MIT公开课——线性代数 笔记。
这节课将讲解课程中很大的主题,还是对方阵而言,讨论特征值和特征向量,下一节课讲解应用。特征向量与特征值给定矩阵 \(A\)矩阵作用在向量上,矩阵 \(A\) 的作用就像输入向量 \(x\) ,结果得到向量 \(Ax\)。就像一个函数,微积分中的函数表示作用在数字 \(x\) 上得到 \(f(x)\)在这些 \(x\
转载
2023-11-24 02:37:27
87阅读
特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍 是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可 以取适当的二维方
转载
2024-07-30 15:48:43
87阅读
一、概述谷歌人脸识别算法,发表于 CVPR 2015,利用相同人脸在不同角度等姿态的照片下有高内聚性,不同人脸有低耦合性,提出使用 cnn + triplet mining 方法,在 LFW 数据集上准确度达到 99.63%。通过 CNN 将人脸映射到欧式空间的特征向量上,实质上:不同图片人脸特征的距离较大;通过相同个体的人脸的距离,总是小于不同个体的人脸这一先验知识训练网络。三、FaceNet
转载
2024-07-04 18:59:28
201阅读
特征值、特征向量、左特征向量Ap=λpAp=λpAp=,它们可能是不同的。若向量空间是无穷维的,特征值的概念可以推广到
原创
2022-04-18 17:38:15
458阅读
特征值、特征向量、左特征向量Ap=λpAp=λpAp=λp在方矩阵 AAA ,其系数属于一个环的情况,λλλ 称为一个右特征值如果存在一个列向量 ppp 使得 Awr=λwrAw_r=λw_rAwr=λwr,或者λλλ 称为一个左特征值如果存在非零行向量 ppp 使得 wlTA=wlTλw_l^T A=w_l^T λwlTA=wlTλ。若环是可交换的,左特征值和右特征值相等,并简称为特征值。否则,例如当环是四元数集合的时候,它们可能是不同的。若向量空间是无穷维的,特征值的概念可以推广到
原创
2021-08-10 15:13:23
1272阅读