医学图像的基本概念医学图像是反映解剖区域内部结构或内部功能的图像,它是由一组图像元素——像素(2D)或立体像素(3D)组成的。医学图像是由采样或重建产生的离散性图像表征,它能将数值映射到不同的空间位置上。像素的数量是用来描述某一成像设备下的医学成像的,同时也是描述解剖及其功能细节的一种表达方式。像素所表达的具体数值是由成像设备、成像协议、影像重建以及后期加工所决定的。医学图像的组成医学图像的组成包
转载
2024-02-26 10:27:37
94阅读
文 马丰敏医学影像是现代医疗保健的重要组成部分,提高了各种疾病治疗的准确性、可靠性和发展性。人工智能也被广泛用于进一步增强这一过程。 然而,采用人工智能算法的传统医学图像诊断需要大量的注释作为模型训练的监督信号。为了获得人工智能算法的准确标签——作为临床常规的一部分,放射科医生为每位患者准备放射报告,然后注释人员使用人工定义的规则和现有的自然语言处理(NLP) 工具。从这些
转载
2024-03-17 19:03:59
50阅读
1.X线检查X光检查:也叫拍片子,它有很强的穿透能力,检查时就像给身体拍了一张平面影像的照片。如果遇到被遮挡的部位,底片上不会曝光,但洗片后会呈现出白色。适用情况:X光是观察骨骼简便的检查方式,价格也相对较便宜。如果怀疑四肢、脊柱等部位出现急性外伤,伤到了骨骼,有突发急性疼痛或是难以控制的慢性疼痛,一般会优先选择X光。缺陷:X光检查只能提供平面影像,成像也容易受衣物、首饰甚至过厚的软组织影响,一般
转载
2024-03-28 10:54:12
93阅读
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的
转载
2024-03-06 07:43:28
65阅读
图像显示和打印面临的一个问题是:图像的亮度和对比度能否充分突出关键部分。这里所指的“关键部分”在 CT 里的例子有软组织、骨头、脑组织、肺、腹部等等。技术问题: 显示器往往只有 8-bit, 而数据有 12- 至 16-bits。 如果将数据的 min 和 max 间 (dynamic range) 的之间转换到 8-bit
本文是 B 站中一个关于医学成像技术系列视频的笔记,因为是搞医学图像处理的,只挑选着看了一部分。视频的链接为:医学成像技术。根据成像原理,医学成像技术可以分为没有辐射的超声波成像、MRI 和有辐射的 X-光成像(如 CT),核素成像等。根据扫描方式的不同,有三种,轴状位(上下移动)、冠状位(前后移动)、矢状位(左右移动) MRI 可以用对比剂钆来让血管更清楚;CT 中的对比剂是碘,通过注射完成;C
图像识别过程分为图像处理和图像识别两个部分。图像处理部分内容参考此篇:图像识别过程(以下图像识别内容同样参考本篇)图像识别将图像处理得到的图像进行特征提取和分类。识别方法中基本的也是常用的方法有统计法(或决策理论法)、句法(或结构)方法、神经网络法、模板匹配法和几何变换法。1)统计法(StatisticMethod) 该方法是对研究的图像进行大量的统计分析,找出其中的规律并提取反映图像本质特点的特
转载
2023-08-21 23:23:35
955阅读
文章目录K最近邻法-KNNN折交叉验证法KNN总结:线性分类器得分函数损失函数(代价函数)损失函数1:hinge loss/支持向量机损失损失函数2:互熵损失(softmax分类器) K最近邻法-KNN现在用的比较少,因为其比较耗费内存,运行速度较慢练习: CIFAR-10数据集 60000张32*32小图片,总共10类,50000张训练和10000测试 下图第一行,左侧为大量的飞机数据,右侧第
转载
2024-02-24 12:19:23
171阅读
识图网站推荐 常规图片搜索引擎 1-5 为常用的图片搜索引擎,包括谷歌图片、百度图片等,都包含以图识图的功能。各种图片都可以识别,支持本地上传和网络图片链接的方式。1、Yandex.Images –强力推荐 地址:https://yandex.com/images Yandex 是俄罗斯用户最多的网站,英文支持较好。效果相当给力,其它搜索引擎找不到的话用它试试,没准有惊喜哦。推荐!2、谷歌识图 地
转载
2024-01-30 16:47:45
427阅读
实现图像识别的流程
---
为了帮助你理解如何实现图像识别,我将以一个简单的例子来解释整个流程。假设我们要用Python实现一个简单的图像识别模型来识别猫和狗的图片。
整个流程可以分为以下几个步骤:
1. 数据准备:收集一些带有标签的猫和狗的图片作为训练集和测试集;
2. 数据预处理:将图片转换为适合模型输入的格式;
3. 模型选择:选择合适的图像识别模型;
4. 模型训练:使用训练集对模型
原创
2023-12-20 08:16:11
53阅读
基于CNN的图像识别基于CNN的图像识别CNN相关基础理论卷积神经网络概述卷积神经网络三大核心概念TensorFlow 2.0 APItf.keras.Sequentialtf.keras.layers.Conv2Dtf.keras.layers.MaxPool2Dtf.keras.layers.Flatten与tf.keras.layer.Densetf.keras.layers.Dropou
转载
2023-10-08 08:09:07
698阅读
图像处理的层次:图像预处理 ——> 图像理解从原始图像到目标识别的过程中常常伴随着数据缩减。图像运算:(1)点运算(2)局部图像运算(3)全局图像运算像素数据格式:二元数据:只有黑(true)白(false),因此只要1bit灰度级:覆盖0~255的范围,需要1Byte彩色数据:需要R,G,B 3种成分 点 运 算变换运算:灰度图像 --> 二元图像 可以用 门限设置 或者
转载
2023-09-03 16:53:59
260阅读
文章目录【 1. 图片采集 】【 2. 图片读取 】【 3. 图片展示 】【 4. 图片保存 】【 5. 功能展示 】 OpenCV是一个开源的跨平台计算机视觉库。 跨平台是指,它可以运行在Linux、Windows、Android和Mac OS等操作系统上。 OpenCV提供了多种语言的编程接口,例如C、C++、Python。 它实现了图像处理和计算机视觉方面的很多通用算法,具有轻量高效的特点
转载
2023-11-06 23:14:37
452阅读
&nbs
转载
2024-03-28 09:11:40
199阅读
作者:yangyaqin图像识别全流程代码实战实验介绍图像分类在我们的日常生活中广泛使用,比如拍照识物,还有手机的AI拍照,在学术界,每年也有很多图像分类的比赛,本实验将会利用一个开源数据集来帮助大家学习如何构建自己的图像识别模型。本实验会使用MindSpore来构建图像识别模型,然后将模型部署到ModelArts上提供在线预测服务。主要介绍部署上线,读者可以根据【实验课程】花卉图像分类实验(&n
转载
2024-05-10 07:47:00
168阅读
文章目录一、图像识别&经典数据集1、Cifar数据集2、 ImageNet二、CNN三、卷积神经网络常用结构1、卷积层2、池化层(2)实现四、经典CNN模型1、LeNet-5 模型(1998)(1)模型(2)代码示例2、CNN模型正则表达3、Inception-v3模型(1)Inception结构(2)Inception模块实现五、CNN迁移学习1、迁移学习介绍2、TF实现迁移学习(1)获取数据
转载
2024-01-11 20:13:54
291阅读
一、数据准备 首先要做一些数据准备方面的工作:一是把数据集切分为训练集和验证集, 二是转换为tfrecord 格式。在data_prepare/文件夹中提供了会用到的数据集和代码。首先要将自己的数据集切分为训练集和验证集,训练集用于训练模型, 验证集用来验证模型的准确率。这篇文章已经提供了一个实验用的卫星图片分类数据集,这个数据集一共6个类别, 见下表所示 在data_prepare
转载
2024-08-08 15:46:22
183阅读
搜索是我们很多人发现信息的主要渠道,但只能搜索文字显然是不够的,图像和视频肯定是搜索领域的下一个发展方向。当然,GooglePhotos已经能够部分实现这个功能了,但很显然这还远远不够。 不过Google在周三宣布,他们提供了一个强大的图像识别工具,名为GoogleCloudVisionAPI。对于开发者们来说,这可能会是一个非常有用的工具,有了它,开发者们就可以让自己的软件、机器人知道图像
转载
2024-03-26 09:53:39
115阅读
在python3下用PIL做图像处理 Python Imaging Library (PIL)是python下的图像处理模块,支持多种格式,并提供强大的图形与图像处理功能。目前PIL的官方最新版本为1.1.7,支持的版本为python 2.5, 2.6, 2.7,并不支持python3,但有高手把它重新编译生成python3下可安装的exe了。这一非官方下载地址http://www.lf
一、创建图片描述符1.1 下载创建图片描述符的项目demo链接1.2 下载好后,存储到D盘,或其他盘里** 注意:** 把你想要的图片放到项目的目录里。1.3 安装依赖 node.js 在cmd中执行操作命令node app.js -i <path-to-the-img/image-name.jpg/png>1.4 具体执行流程为下图1.5 在这之后,您将在新生成的output文件夹