一、数据科学研究的现状与趋势         总结:阐述地很全面,内容很丰富,读完对数据科学有了更广阔和深入的了解。 二、数据科学进展:核心理论与典型实践          &
转载 2023-06-07 14:49:03
127阅读
本文作者陈遵秋数据分析框架(传统数据分析框架,大数据分析框架) 医疗大数据有着前面第一节提到的所有特征。在医疗大数据带来各种优势的同时,大数据随之带来的各种特性使得传统的数据处理和数据分析方法及软件捉襟见肘,问题多多。在大数据时代出现之前,受限于数据量的可获得性和计算能力的有限性,传统的数据管理和分析采用着不同的思路和流程。 传统上,对于问题的研究建立在假设的基础上进行验证,进而研究事物的相关因
面向医学图像分析的深度学习研究方案这是一篇有关“深度学习在医学图像处理方面”的研究报告的第一节,主要包含研究对象,常用方法,深度学习简介,研究现状,研究重点。 在撰写报告时,我找到了两篇 Deep learning in BioInformation / BioMedicine 的综述文章,也一并分享出来: Deep Learning in Bioinformatic Applications
医学是人类重点关注的领域之一。医学水平与人类健康息息相关,医学的进步是人类健康生活的重要保障。医学领域包括医疗、生物、药物等多个方面,每天产生的数据在EB级以上,医学数据是典型的大数据。采集、分析并挖掘医学大数据中的高价值信息对于利用信息技术开展医学研究、提升临床医疗诊断水平、发现新药物、开展基因分析与各类生物实验等具有重要的意义。《大数据》期刊专门策划了“医学大数据”专题,旨在阐述医学大数据领域
原创 2021-04-07 10:49:21
146阅读
医学工作者做完医学实验后,少不了要对收集的实验数据进行数据分析。通常来说,常用的数据分析方法有以下六种:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。1、聚类分析(Cluster Analysis)聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异
1.医学图片与自然场景图片的区别         医学图像检测与自然图像检测差别还是比较大的,自然图像的目标检测由于需要检测的类别非常多,现在的目标是更深的网络(提高目标的特征表示能力,resnet),更快的检测速度(最终需要商用,要有较好的实时性,yolo,ssd),更好的检测效果(boundbox要完全正好包住目标,locnet);而医学图像
摘要大多数现有的基于Transformer的网络架构用于视觉应用,但需要大规模数据集来正确训练。然而,与用于视觉应用的数据集相比,用于医学成像的数据样本数量相对较低,使得难以有效地训练用于医学应用的Transformer。为此,我们提出了一个门控轴向注意(Gated Axial-Attention)模型,该模型通过在自注意模块中引入额外的控制机制来扩展现有的体系结构。此外,为了在医学图像上有效地训
一、胰腺分割数据数据下载链接:​​http://academictorrents.com/details/80ecfefcabede760cdbdf63e38986501f7becd49​​数据介绍:包含82个病例的胰腺数据集。二、MICCAI胰腺分割数据数据下载链接:http://medicaldecathlon.com/数据介绍:282个训练病例,139个测试病例,同时分割胰腺和肿瘤,测试
原创 2022-10-06 08:56:26
973阅读
参考文献链接:[2204.08610] Image Data Augmentation for Deep Learning: A Survey (arxiv.org)基本数据增强方法Image Manipulation(图像处理)        主要集中在图像变换上,例如旋转、翻转、增大或缩小图像比例、添加噪声、更改颜
近日开始进入实验室搬砖,涉及医学图像这一块,之前没有接触,对内容进行一个梳理,帮助自己的理解,同时可能可以帮助其余有需要的人。1.医学影像学医学影像学(Medical Imaging)是研究借助于某种介质(比如X射线,电磁场,超声波等)和人体相互作用,把人体内部组织器官结构、密度以影像方式表示出来,供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学
多模态医学图像数据集脑的数据一般可以多模态,MRI-T1/T2 etc, CT/MRI,单独的配准图像应该很难找,一般是找分割的多模态图像。上海交通MedMNIST10 datasets, single modal, classification task Link:https://arxiv.org/pdf/2010.14925.pdfMedPix更多侧重于疾病,目前没有找到合适的多模态配准的数
1 前言随着医学图像三维重建体绘制技术的发展及其研究的深入,医生对数据的分析不再局限于简单的观察输出结果,还要求能对结果进行友好交互,使最终结果更能满足其特定的观察需求。然而由于医学数据通常较大,对所有数据的重建和交互计算量非常大,目前能达到重建速度快、重建效果好、交互流畅的技术一般都是在专业的图形工作站上实现。但这些设备通常较为昂贵,一定程度上阻碍了三维重建体绘制技术在医学领域的普及。
一、什么是图像image?各种数字化表示的图片、图表以及照片的统称,是二维及以上的高维信息。二、图像的分类1.图像取值的不同:黑白图像(black and white image)/二值图像(binary image),灰度图像(gray level image)和彩色图像(color image)     黑白图像:指图像的每个像素只能是黑或者白,没有中间的过渡,故
 单色图像的分割算法通常基于图像亮度值的两个基本特性:不连续性和相似性。在第一种类别中,处理方法是基于亮度的突变来分割一幅图像,如图像的边缘。在第二种类别中,主要方法是根据事先定义的准则把图像分割成相似的区域。今天小白介绍一下MATLAB中常用边缘检测的方法。掩膜的概念常用的点、线、边缘检测首先需要对检测的工具——掩模这一概念需要了解。拿3 x 3的掩模来说,该过程为计算系数和由掩模覆盖
近年来,深度学习技术一直都处于科研界的前沿。凭借深度学习,我们开始对图像和视频进行分析,并将其应用于各种各样的设备,比如自动驾驶汽车、无人驾驶飞机,等等。 A Neural Algorithm of  Artistic  Style是一篇最新发表的研究性论文,论文向我们介绍了如何将一种风格和气质从艺术家身上转移至一张图像,并由此创建出另一张新图像。其他的一些论文,比如Gener
1.X线检查X光检查:也叫拍片子,它有很强的穿透能力,检查时就像给身体拍了一张平面影像的照片。如果遇到被遮挡的部位,底片上不会曝光,但洗片后会呈现出白色。适用情况:X光是观察骨骼简便的检查方式,价格也相对较便宜。如果怀疑四肢、脊柱等部位出现急性外伤,伤到了骨骼,有突发急性疼痛或是难以控制的慢性疼痛,一般会优先选择X光。缺陷:X光检查只能提供平面影像,成像也容易受衣物、首饰甚至过厚的软组织影响,一般
基于GPU加速的医学图像融合分析-计算机应用技术专业论文摘要不同成像设备因其成像原理不同,所成图像也会各具特色。将多幅不同类型的医 学图像进行融合处理,可使各图像优势得到相互补充,图像信息得到全面利用,为临 床诊疗提供更加完善、全面、丰富的医学图像。无论是在医学研究还是临床应用方面,医学图像处理技术发挥的效力和影响力都 越来越大,这也促使我们对 CT 和 MRI 图像融合的速度要求越来越高,迫使我
医学图像进行数据增强(翻转、旋转)的方法总结使用深度学习执行图像分类任务时往往因为数据量不平衡或者数据量不足,需要进行数据增强,数据增强包括平移、旋转、裁剪、拉伸、缩放、水平翻转、垂直翻转、水平垂直、加噪声等等。而对于乳腺超声图像数据来说,拉伸、裁剪等操作会改变图像的形状信息,因此我使用水平翻转和旋转的方法进行数据扩充。一、水平翻转两种方法:分别是利用Opencv的DataAugment()函数、
转载 2024-04-24 13:01:00
500阅读
作者:梦飞翔 编辑:学姐引自Unetr: Transformers for 3d medical image segmentation1.序言本文将以Nvidia团队最近提出的一种新的医学图像分割网络作为切入点,结合所用开源数据集,为各位同学提供一份从下载数据集到搭建网络训练医学任务的完整攻略,希望可以为各位医工交叉领域的同学提供一条捷径,力争少走弯路。2.开源数据集获取与使用本节将以论文作者使用
在深度学习领域中常常存在着图像数量不够,或者图像种类不丰富等情况,这一点在医学图像处理中尤其常见,根据我个人经验,使用良好的图像增广(Augmentation)往往能达到事半功倍,甚至是起到决定性的效果。另外,随着半监督、无监督等算法的新起,对图像增广,以及图像relabel的各种算法也开始出现,有必要在这里讨论下一些奇怪但有效的图像增广方法。Sample pairing 增广方法来自于奇文Dat
  • 1
  • 2
  • 3
  • 4
  • 5