# 小厂数据分析之旅 ## 引言 数据分析是当今企业决策中不可或缺的一部分。对于刚入行的小白来说,学习数据分析的过程可能显得有些复杂。本文将为您逐步讲解如何进行一个“小厂数据分析”项目,涵盖从数据收集到结果呈现的整个流程。我们会使用 Python 作为主要工具,并提供相关代码示例及详细解释。希望通过这篇文章,您能对数据分析有一个初步的了解,并能独立完成一个小型数据分析项目。 ## 数据分析
原创 10月前
57阅读
大约18个月前,正值新冠疫情爆发最严重的时期,我失去了工作。之前,我在大学期间做兼职家教。我获得的课时费被用来支付伙食费、汽车加油等费用。随着疫情防护政策的升级,要求停课停学,居家隔离,我也不能再去学校了,被迫在家自习。一开始这看起来很糟,但我意识到这能让我有更多的时间。我开始尝试在这段时间里提升自己的技能。在做了一些研究后,我发现一个很有意思的机器学习在线课程。这是我学完的第一个在线课程。在那之
1.数据分析方法分类业务数据分析师(对数学建模的要求较低)、数据挖掘(对业务与数学建模的要求较高)、大数据分析(需要一定的编程能力)。层层进阶2.职位进阶3.数据分析结果数据可视化4.数据分析的流程在业务理解中要多问问题,了解需求,知道问题的核心。可以看书籍《学会提问》。5. 围绕数据分析师的三大类工作内容
原创 2022-04-15 21:35:17
1588阅读
不用任何公开参考资料,估算今年新生儿出生数量 解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率 2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测 3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20
当我们谈论IT服务管理(ITSM)世界中的大数据时,这里有两个非常不同的概念: • IT为业务提供的大数据工具/服务:对关键的业务运营数据进行数据索引。 • IT运营中的大数据:处理和利用复杂的IT运营数据。大数据中的业务运营服务在竞争日益激烈,数据驱动的世界中,企业管理者都在寻找能够有效管理和解释业务数据(尤其是大数据)的方法。数字化的业务操作,如:电子商务网站和银行移动APP,它们产生了大量的
转载 2023-10-03 08:52:17
206阅读
数据技术和数据分析有什么关系大数据经过多年发展形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,那么大数据技术和数据分析有什么关系呢?1、从大数据的技术链来看:数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是
目录一、Apache Pig概述二、Apache Pig架构1)架构图2)Apache Pig组件1、Parser(解析器)2、Optimizer(优化器)3、Compiler(编译器)4、Execution engine(执行引擎)三、Apache Pig安装1)下载Apache Pig2)配置环境变量3)修改配置四、Apache Pig执行模式1)本地模式2)Tez 本地模式3)Spark 本
转载 2023-12-20 21:04:58
199阅读
时间序列一、定义二、构成要素三、时间序列预测模型3.1 指数平滑法3.2 ARIMA模型3.3霍尔特-温特模型 一、定义时间序列(或称动态数列) 是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。经济数据中大多数以时间序列的形式给出。根据观察时间的不同,时间序列中的时间可以是年份、季度、月份或其他任何时间形式。二、构成要素1)
一、什么是AARRR模型,以及为什么它如此受欢迎?让我们深入了解Dave McClure的模型。AARRR代表:用户拉新Acquisition 用户激活Activation 用户留存Retention 用户推荐Referral 商业收入Revenue二 、RARRA模型是托马斯·佩蒂特Thomas Petit和贾博·帕普Gabor Papp对于海盗指标-AARRR模型的优化。RARRA模型突出了用
转载 2023-10-03 11:30:01
222阅读
简介二代测序最常用的质量评估软件是FastQC,多样本时可进一步结合MultiQC。此外速度超快的fastp也特别推荐,而且包括质量评估、质量控制等功能,可以说是国产软件之光,详见下方详细教程:数据的质量控制软件——FastQC整合QC质控结果的利器——MultiQC极速的FASTQ文件质控+过滤+校正fastp三代纳米孔(Nanopore)测序数据与二代Illumina测序数据相比,具有读长更长
 相关性分析散点图矩阵初判多变量间关系,两两数据之间的,比如说4个数据ABCD,就有12个比较,第一个参数和第二个参数,第一个参数和第三个参数,.......这个图就是正态分布的几个参数,就没有任何的相关性 相关性分析 分析连续变量之间的线性相关程度的强弱 图示初判 / Pearson相关系数(皮尔逊相关系数) / Sperman秩相关系数(斯皮尔曼相关系数) 1
转载 2024-01-11 12:33:35
143阅读
数据分析一、数据分析——基础1.什么是数据分析1.1数据分析的概念1.2数据分析的应用1.3数据分析方法1.3.1对比分析1.3.2同比分析1.3.3环比分析1.3.4 80/20分析1.3.5 回归分析1.3.6 聚类分析1.3.7时间序列分析1.4数据分析工具1.5数据分析流程二、数据分析——numpy2.1numpy概述2.1.1numpy介绍2.2数据预处理2.2.1数据读写2.2.1.
对于一个ML问题,解决思路通常是:拿到数据后怎么了解数据(可视化) 选择最贴切的机器学习算法 定位模型状态(过/欠拟合)以及解决方法 大量极的数据的特征分析与可视化 各种损失函数(loss function)的优缺点及如何选择首先拿到数据要进行***数据分析***数据准备->数据清洗->数据重构->数据分析 典型的重构就是归一化可以利用降维算法来实现数据的处理,用更少的特征描述原
转载 2023-08-31 13:00:09
395阅读
2022年数据分析有哪些新趋势?今年数据分析主要趋势:1.激活多样性和活力使用自适应AI系统推动增长和创新同时应对全球市场的波动; 2.增强人员能力和决策以提供由业务模块化组件创建的丰富的、情境驱动的分析; 3.将信任制度化以大规模地实现数据分析的价值。管理AI风险并实施跨分布式系统、边缘环境和新兴生态系统的互联治理。现在应该根据关键数据分析技术趋势对于业务优先事项的紧迫性和匹配性来监测、
在当下这个大数据时代,数据分析早已不是一个岗位,而是许多从业者的核心竞争力。无论是在医疗、旅游还是互联网行业,甚至不论你是做运营还是研发,掌握数据分析能力都是基本功之一。其实也很好理解,我们的生活和工作早就离不开和各种数据打交道了。那么掌握数据分析能力到底有什么用呢?我们可以来看看。   对于运营性质的工作来说,数据是一切工作的驱动力,数据作为一种度量方式,能真实的反映产品运营的状况,帮助我们进一
1. 什么是数据分析1) 数据分析发展背景进入到 21 世纪以后,伴随着互联网的迅速发展,大数据应运而生,越来越多的数据被不断的挖掘出来,形成了“数据为王”的时代。就拿我们自己举例子,比如你的购物习惯、你的喜好等等,这些都会组成数据,对你购物习惯的分析会帮助购物平台更精准的推荐商品,这只是数据分析应用的冰山一角,它还可以应用到金融领域、交通领域、畜牧业等等。随着数据规模越来越庞大,单靠人力重复的脑
这是python数据分析的学习部分啦~ 由于数据分析,涉及到绘图、计算撒的,所以我转向用Jupyter编辑器的使用,在很前面的一篇博客也介绍了怎么安装Python 、 PyCharm 、 Anaconda 介绍及安装 当然也可以不用通过 Anaconda,可以直接通过pip install jupyter命令直接安装呀,下面就开始较详细介绍一下Jupyter Notebooks好啦,正文开始 Ju
近两年来,大数据发展浪潮席卷全球。研究机构IDC预测,全球大数据分析市场规模将由2015年的1220亿美元,在5年间成长超过50%,并在2019年底达到1870亿美元的规模。资本也敏锐地追逐着高增长市场。数据显示,美国在2013年大数据领域的新创公司就获得了36亿美金(200多亿人民币)的投资,硅谷大数据公司Palantir更是获得高达200亿美金的估值。对于被大数据概念包围的人们来说,理解大数
转载 2023-08-03 20:57:05
146阅读
究竟什么是数据分析师?其定位和价值是什么?近年来互联网经济的蓬勃发展可谓给数据大规模累积提供了沃土,专家大拿们对大数据技术与应用的讨论和研究热度不减,对数据中隐含的深层价值及其应用的重视程度越来越高,更多人开始注重视量化分析、科学及高效地决策,这个过程中越来越多的企业就产生了对专业化的分析人才的需求。简单通用地讲,数据分析师是一类能够在建立明确分析目标基础上对数据进行搜集、加工、分析并挖掘出有价值
 注:部分文字来自官网,感觉翻译过来就变味了,所以直接上英文了。       谷歌分析(Google Analytics,以下简称GA),按我的理解就是谷歌提供的一个数据分析统计的平台。       GA除了进行传统的网页统计之外,现在也支持对移动应用的统计和分析了, Google Analytics 发布的
  • 1
  • 2
  • 3
  • 4
  • 5