我正在做一个Java项目,我必须做一个文本相似程序。我想要采取2个文本文档,然后将它们相互比较并获得相似之处。他们是如何相似的。我稍后会放一个已经有数据库的人可以找到这些单词的同义词,并通过文本来查看文本文本中的一个作者是否只是将文字改为其他同义词,而文本完全相同。同样的事情上升或下降移动的paragrafs。是的,这是一个plagarism程序…我想从你那里听到你会推荐什么样的算法。我在这里和其
摘要: 为了提高文本相似检测算法的准确,提出一种结合潜在狄利克雷分布(Latent Dirichlet Allocation,LDA)与Doc2Vec模型的文本相似检测方法,并把该算法得到的模型命名为HybridDL模型。该算法通过Doc2Vec对文档训练得到文档向量,再利用LDA模型得到文档主题与各个主题下特征词出现的概率,对文档中各主题及特征词计算概率加权和,映射到Doc2Ve
1. 使用simhash计算文本相似2. 使用余弦相似计算文本相似3. 使用编辑距离计算文本相似4. jaccard系数计算文本相似文本相似计算常用于网页去重以及NLP里文本分析等场景。文本相似,可以分为两种,一种是字面相似,另一种是语义相似。本文记录的是文本的字面相似的计算及实现,语义相似计算则需要海量数据去计算语义值,较为复杂。最常用的且最简单的两种文本相似检测方法:局部
比较两个文件中的文本相似(纯文本文件);5种文件:word、excel、ppt、pdf、txt;提取5中文件中的所有文本,作比对。计算相似;1.读取文件1).读word文件//读取 word path参数为文件绝对路径// word2003转换为2007public String readWord(String path) { String buffer = "";
转载 2023-06-27 09:02:13
399阅读
〇、千言数据集:文本相似比赛简介文本相似旨在识别两段文本在语义上是否相似文本相似在自然语言处理领域是一个重要研究方向,同时在信息检索、新闻推荐、智能客服等领域都发挥重要作用,具有很高的商业价值。 文本相似:https://aistudio.baidu.com/aistudio/competition/detail/45目前学术界的一些公开中文文本相似度数据集,在相关论文的支撑下对现有的公
相似度度量(Similarity),即计算个体间的相似程度,相似度度量的值越小,说明个体间相似越小,相似的值越大说明个体差异越大。 对于多个不同的文本或者短文本对话消息要来计算他们之间的相似如何,一个好的做法就是将这些文本中词语,映射到向量空间,形成文本中文字和向量数据的映射关系,通过计算几个或者多个不同的向量的差异的大小,来计算文本相似。下
转载 2023-08-05 16:56:03
182阅读
本文目的搜索关键词,返回最相关的txt文本内容(模仿搜索引擎)网上的例子都是一个list里面放入几句话,然后输入关键词去计算相似.无法在实际中应用,例如下面改进了下,下面改为输入一句话,不是去list中查找,而是去文件夹中查找,这样就有一个搜索引擎的雏形下面代码在python2.7,linux下运行,运行时,修改path以及question即可path代表存放一大堆txt文件的文件夹的路径下面代
方法1:无监督,不使用额外的标注数据average word vectors:简单的对句子中的所有词向量取平均,是一种简单有效的方法,缺点:没有考虑到单词的顺序,只对15个字以内的短句子比较有效,丢掉了词与词间的相关意思,无法更精细的表达句子与句子之间的关系。tfidf-weighting word vectors:指对句子中的所有词向量根据tfidf权重加权求和,是常用的一种计算sentence
最近帮很多本科毕业生做文本数据分析,经常遇到的一个需求是计算文档相似。思路:抽取语料(所有文档)中的词语,构建词典(词语与数字对应起来)。根据构建的词典对每个文档进行重新编码(将文档转化为向量)。使用余弦计算相似下面的corpus是我在知乎live随便找到的几个评论,拿来当做测试的例子。好像数据不怎么好玩,大家跟着一起凑合凑合吧。corpus = ['老师讲的很好很全面干货很多','讲述的很好
遇到这样一个需求,需要计算两个文本内容的相似,以前也接触过,下面列举几种方式,也是我在网上查了很多内容整理的,直接上代码,供大家参考,如果你也有这样的需求,希望能帮到你: 内容目录1、字符矩阵标记对比2、海明距离计算,对比相似3、Jaccard计算 1、字符矩阵标记对比public static void main(String[] args) { String aa = "在线作业成
计算文本相似方法文本相似计算方法可以分为两大类:基于深度学习的方法和基于非深度学习的方法。 虽然小的我在自然语言处理与交互部,但我只是个开发,不是算法,所以这里采用简单的非深度学习的方法。 常用的几个计算方法:余弦相似、最小编辑距离。。。。。 由于场景比较简单,所以并没有对文本进行分词,如果有需要,可以用jieba,hanlp等等余弦相似private static double get
 目录一、前言二、关于SimHash补充知识一)、什么是海明距离二)、海明距离的应用三)、什么是编辑距离三、SimHash算法的几何意义和原理一)、SimHash算法的几何意义二)、SimHash的计算原理 三)、文本相似计算四、Java通过SimHash计算文本内容相似代码示例一)、新增依赖包二)、过滤特殊字符三)、计算单个分词的Hash值四)、分词计算向量五)、获取标
简介        针对文本相似判定,本文提供余弦相似和SimHash两种算法,并根据实际项目遇到的一些问题,给出相应的解决方法。经过实际测试表明:余弦相似算法适合于短文本,而SimHash算法适合于长文本,并且能应用于大数据环境中。余弦相似原理      &nb
simhash算法分析:文本相似算法:1、TF-IDF:TF(词频),IDF(逆词频)利用tf-idf得到一个词语的权重,来计算一篇文章的关键词2、simhash:局部敏感hash局部敏感:A、B具有一定相似性,在hash后,仍然保持相似性。通过将关键词集合hash成一串二进制,直接对比二进制数,来看其相似性得到两篇文档的相似性,查看相似性的时候采用海明距离(二进制数之间计算)。对文章simha
转载 2023-10-09 17:00:04
221阅读
常见文本相似计算方式及代码文本相似的计算广泛的运用在信息检索,搜索引擎, 文档复制等处:因此在各种不同的情况与任务中,有不同的文本相似计算。近期在处理搜索引擎的相关项目下面介绍一下我们主要使用的相似计算方式及其实现 Github余弦相似:余弦相似是纯数学中的概念,首先,将进行计算的两个str中的word抽取出来,用作非重复词库。遍历词库,将两个句子的表示向量化: 每个向量长度为 词库大
接上文继续总结,上篇文章主要总结了文本的一些处理算法,这篇文章主要总结文本如何进行表示。目录一、Word Representation1、单词的表示one hot representation(one hot encoding) 2、句子的表示1)boolean方法 2)count based representation二、 计算两个句子之间的相似1、欧式距离2、
文本匹配是NLU中的一个核心问题,虽然基于深度学习的文本匹配算法大行其道,但传统的文本匹配算法在项目中也是必要的。本文详解了传统的文本匹配算法Jaccard、Levenshtein、Simhash、Bm25、VSM的原理及其代码分享给大家,若有不足之处,请大家指出。1. 概述 在实际工程项目,不论是基于交互的还是基于表示的文本匹配,往往都会结合传统的字面匹配算法来综合评估两段文本
文章目录1. 余弦相似2. TF-IDF模型2.1 词频TF的计算方法2.2 反文档频率IDF的计算方法2.3 TF-IDF的计算方法3. 基于语义相似的计算 —— DSSM4. LSI/LSA模型5. LDA模型6. 编辑距离计算7. 杰卡德系数计算8. Word2Vec计算9. BM25 NLP、数据挖掘领域中,文本分析是一个很重要的领域,这有助于我们去让计算机理解语言的作用和使用。文本
简介针对文本相似判定,本文提供余弦相似和SimHash两种算法,并根据实际项目遇到的一些问题,给出相应的解决方法。经过实际测试表明:余弦相似算法适合于短文本,而SimHash算法适合于长文本,并且能应用于大数据环境中。余弦相似原理余弦定理:            &nbsp
github:https://github.com/worry1613/csdn-blog-recommend数据集下载地址  https://pan.baidu.com/s/1qzJDmpzAMe1vmtvuCXSfIw数值型数据相似计算可以用那些传统的算法,余弦,欧氏,Jaccard,曼哈顿,传统算法总共11种。这些算法都是处理数值型数据的,可现在是文本比较,没有数字,怎么用这样算
  • 1
  • 2
  • 3
  • 4
  • 5