数据收集:在数据收集阶段,首先需要确定合适的数据来源。这些来源可以包括新闻网站、博客、论坛、社交媒体等。根据项目需求,可以通过手动下载数据或编写网络爬虫进行自动抓取。在收集数据时,请务必遵守相关网站的使用条款和政策,尊重数据隐私和知识产权。数据清洗:数据清洗是一个关键步骤,因为它可以帮助去除数据中的噪声和无关信息。在这个阶段,可以使用文本处理工具和自然语言处理技术来删除广告、注释、重复内容等不相关
Fine tuning 模型微调一. 什么是微调针对某一个任务,当自己训练数据不多时,我们可以找一个同类的别人训练好的模型,换成自己的数据,调整一下参数,再训练一遍,这就是微调。为什么要微调数据集本身很小,从头开始训练具有几千万参数的大型神经网络是不现实的。降低训练成本站在巨人的肩膀上,没必要重复造轮子迁移学习迁移学习几乎都是用在图像识别方向的。 迁移学习的初衷是节省人工标注样本的时间,让模型可以
文章作者:Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov导言自从BERT横空出世以来,各类预训练模型一直在试图“撼动”BERT的地位,如XLM、XLNet等等,然而,这些模
一、原理在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练ImageNet上进行微调的方法。什么是微调?这里以VGG16为例进行讲解。VGG16的结构为卷积+全连接层。卷积层分为5个部分共13层,即conv1~conv5。还有三层全连接层,即fc6、fc7、fc8。卷积层加上全连接层合起来一共为16层。如果要将VGG16的结构用于一个新的数据集,首先要去掉fc8这一层。原因是fc8层的输
转载 9月前
42阅读
微调方法Fine-tuning全部微调(Fine-tune all layers):将预训练模型的所有层(包括输入层和输出层)都重新训练,以适应新的任务。这种方法需要大量的数据和计算资源,但通常可以获得更好的性能。冻结部分层(Freeze some layers):在预训练模型的基础上,将其中一些层保持不变,只微调最后几层以适应新任务。这种方法可以加速训练,并减少对计算资源的需求,但可能会影响性能
Bert/RoBerta 微调笔记前言一、为什么要进行微调?二、怎么微调?参数的设置?三、问题:(1)Bert/RoBerta所有参数是不是都要训练?(2)微调Bert/RoBerta时,无法载入全部参数报错CUDA out of memory(3)如何冻结模型参数?(4)如何保存fine-tune好的BERT/ROBERTA模型参数,以及如何在特征提取阶段使用这些参数?(5)逐层微调四、以ME
在本教程中,我们将深入探讨如何微调和特征提取torchvision 模型,所有这些模型都已经预先在1000类的imagenet数据集上训练完成。本程将深入介绍如何使用几个现代的CNN架构,并为如何在PyTorch中使用这些预训练模型进行微调建立直觉。 由于每个模型架构是有差异的,因此没有可以在所有场景中使用的样板微调代码。 然而,研究人员必须查看现有架构并对每个模型进行自定义调整。在本文档中,我们
本文主要讲解在现有常用模型基础上,如何微调模型,减少训练时间,同时保持模型检测精度。首先介绍下Slim这个Google公布的图像分类工具包,可在github链接:modules and examples built with tensorflow 中找到slim包。上面这个链接目录下主要包含:officialresearchsamples而我说的slim工具包就在research文件夹下。Slim
展示如何利用Pytorch来进行模型微调。 本文目的:基于kaggle上狗的种类识别项目,展示如何利用PyTorch来进行模型微调。PyTorch中torchvision是一个针对视觉领域的工具库,除了提供有大量的数据集,还有许多预训练的经典模型。这里以官方训练好的resnet50为例,拿来参加kaggle上面的dog breed狗的种类识别。1 导入相
转载 2023-08-07 11:56:37
226阅读
在设计器中View->Options中调整Grid的大小默认为0.1mm,调成0.01后可以进行微调
原创 2021-07-22 15:22:30
196阅读
文章目录前言微调代码实现Reference前言在实际生产生活中所接触到的数据集,远不及ImageNet数据集中样本数的十
原创 2022-06-27 16:55:28
381阅读
1. 热狗识别让我们通过具体案例演示微调:热狗识别。 我们将在一个小型数据集上微调ResNet模型。该模型已在ImageNet数据集上进行了预训练。 这个小型数据集包含数千张包含热狗和不包含热狗的图像,我们将使用微调模型来识别图像中是否包含热狗。%matplotlib inline import os import torch import torchvision from torch impor
当我们想自己训练一个图片分类模型时,最让我们头疼的问题就是数据集的收集。一般深度学习都要求样本量在一万以上,当我们的样本量不足时,训练出来的model的精度必然大打折扣。在这种情况下我们其实可以通过微调(fine tuning)别人的model来得到一个符合我们自己分类要求的model。因为训练好的model里面存放的就是各种各样的参数,微调实际上就是用别人预先训练好的参数,来作为我们的初始化参数
1 简介          有关BERT的知识点可以参考如下链接 ,这里使用官方预训练好的BERT模型,在SQuAD v1.1上进行微调。BERT: Pre-training of Deep Bidirectional Transformers forLanguage Understanding_SU_ZCS的博客    &nb
前言 什么是模型的微调?       使用别人训练好的网络模型进行训练,前提是必须和别人用同一个网络,因为参数是根据网络而来的。当然最后一层是可以修改的,因为我们的数据可能并没有1000类,而只有几类。把最后一层的输出类别和层的名称改一下就可以了。用别人的参数、修改后的网络和自己的数据进行训练,使得参数适应自己的数据,这样一个过程,通常称之为微调(fine tuning). 
1.微调在深度学习中计算机视觉最重要的技术,微调也是迁移学习2.标注一个数据集很贵 ①ImageNet标注了1000多万张图片,实际使用120万张图片,类别是1000,大型数据集②Fashion-MNIST一共有6万张图片,类别是10,小型数据集③通常的数据集是两者之间,5万图片左右。类别是100,每一类物体有500张图片训练样本有限,训练模型的准确性可能无法满足实际的要求。解决方案:Ⅰ
bert微调步骤:首先从主函数开刀:copy    run_classifier.py 随便重命名 my_classifier.py先看主函数:if __name__ == "__main__": flags.mark_flag_as_required("data_dir") flags.mark_flag_as_required("task_name") flag
完整代码及其数据,请移步小编的GitHub地址  一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的网络。这样的网络在多数的计算机视觉问题上都能取得不错的特征,利用这样的特征可以让我们获得更高的准确率。1,使用预训练网络的 bottleneck 特征:一分钟达到90%的正确率  我们将使用VGG-16网络,该网络在 ImageNet数据集上进行训练,这个模型我们之前提到过了。因为 Image
特征提取微调首先要弄清楚一个概念:特征提取。 用于图像分类的卷积神经网络包括两部分:一系列的卷积层和池化层(卷积基) + 一个密集连接分类器。对于卷积神经网络而言,特征提取就是取出之前训练好的网络的卷积基,用新数据训练一个新的分类器。那么为什么要重复使用之前的卷积基,而要训练新的分类器呢?这是因为卷积基学到的东西更加通用,而分类器学到的东西则针对于模型训练的输出类别,并且密集连接层舍弃了空间信息。
一、RLHF微调三阶段  参考:https://huggingface.co/blog/rlhf  1)使用监督数据微调语言模型,和fine-tuning一致。   2)训练奖励模型      奖励模型是输入一个文本序列,模型给出符合人类偏好的奖励数值,这个奖励数值对于后面的强化学习训练非常重要。构建奖励模型的训练数据一般是同一个数据用不同的语言模型生成结果,然后人工打分。如果是训练自己
  • 1
  • 2
  • 3
  • 4
  • 5