【新智元导读】知乎专栏强化学习大讲堂作者郭宪博士开讲《强化学习从入门到进阶》,我们为您节选了其中的第二节《基于gym和tensorflow的强化学习算法实现》,希望对您有所帮助。同时,由郭宪博士等担任授课教师的深度强化学习国庆集训营也将于 10 月 2 日— 6 日在北京举办。基于gym和tensorflow的强化学习算法实现上一讲已经深入剖析了 gym 环境的构建强化学习实战《第一讲 gym学习
转载
2024-05-21 14:54:12
36阅读
全部 VAE 代码:https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb 自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低维空间,这部分神经网络就被称为编码器。 然后,网络会使用被编码的低维数据去尝试重建
转载
2024-07-31 16:09:18
28阅读
读取数据小数量数据读取这仅用于可以完全加载到存储器中的小的数据集有两种方法:存储在常数中。存储在变量中,初始化后,永远不要改变它的值。使用常数更简单一些,但是会使用更多的内存,因为常数会内联的存储在数据流图数据结构中,这个结构体可能会被复制几次。training_data = ...
training_labels = ...
with tf.Session():
input_data = t
前段时间研究了tflite和量化相关的操作, 经测试量化尤其在具有专门DSP加速的硬件上(比如MTK8183)有着很好的加速效果,大约3X的提升;
tensorflow提供了tflite转化工具toco,使用命令大致如下:
bazel-bin/tensorflow/contrib/lite/toco/toco --input_file=mob
GBDT既可以用于回归,也可以用于分类。两者本质是一样的,分析流程也大致相同,区别在于loss function不同。首先,介绍一下提升方法,boosting就是把一系列的弱学习器反复学习,然后组合成强学习器。对于提升方法,主要需要回答两个问题:第一个是每一轮学习过程中如何改变训练数据的权值或概率分布;第二个就是如何将弱分类器组合成强分分类器。在前面讲到的Adaboost中,根据每次训练数据的误分
转载
2024-07-22 19:05:59
64阅读
随着TensorFlow发布的,还有一个models库(仓库地址:https://github.com/tensorflow/models),里面包含官方及社群所发布的一些基于TensorFlow实现的模型库,用于解决各式各样的机器学习问题。
很多任务,在其中都能找到相同或者近似功能的实现,这时候无需编程或者只要很少的编程,就可以在已有模型的基础上建立自己的人工智能应用。
而且models的更新也
转载
2024-04-28 08:31:00
78阅读
# 实现“pytorch vgg16”的步骤
本文将指导你如何使用PyTorch实现VGG16模型。VGG16是一种深度卷积神经网络,特别适用于图像分类任务。下面是实现的步骤:
| 步骤 | 描述 |
| --- | --- |
| 步骤一 | 导入必要的库和模块 |
| 步骤二 | 加载图像数据集 |
| 步骤三 | 数据预处理 |
| 步骤四 | 定义VGG16模型 |
| 步骤五 | 训
原创
2023-11-26 10:03:56
276阅读
本文基于vgg-16、inception_v3、resnet_v1_50模型进行fine-tune,完成一个二分类模型的训练。目录一、环境准备二、准备数据三、数据解析及图片预处理四、模型定义五、模型训练六、模型预测最后:完整代码 一、环境准备我使用了TensorFlow的model库中的slim模块,路径:https://github.com/tensorflow/models/tree
转载
2024-06-17 20:32:55
71阅读
TensorFlow 官网API学习(Reading data)标签(空格分隔): TensorFlow官网APIAPI地址TensorFlow程序中四种获取数据途径1.tf.dataAPI:很容易构建复杂的输入流水线(推荐的方法!) 2.Feeding:在运行每一步时,利用Python代码提供数据。 3.QueueRunner:在TensorFlow图最开始的时候,基于队列的输入队列来读取文
转载
2024-06-28 11:18:07
36阅读
#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Sun Sep 30 17:12:12 2018这是用keras搭建的vgg16网络这是很经典的cnn,在图像和时间序列分析方面有很多的应用@author: lg"""#################import kerasfrom keras.datasets import c
原创
2023-01-13 05:58:27
194阅读
# PyTorch VGG16预测教程
## 1. 整体流程
首先,我们来看一下实现“PyTorch VGG16预测”的整体流程。下表展示了实现该任务的步骤:
| 步骤 | 操作 |
|------|----------------|
| 1 | 导入必要的库 |
| 2 | 加载预训练模型 |
| 3 | 准备输入数据 |
| 4 | 进
原创
2024-07-07 04:33:39
76阅读
8款惊艳的名牌概念手机,让市面流行的Iphone黯然失色 [22P]1、 Windows 概念手机 设计师 Seunghan Song 的 Windows 概念手机设想了一种能从手机上看到你目前天气的手机,当然,这并不是传统的天气预报的功能,而是如同你从房间的窗户看外面的样子。在晴天,该手机的玻璃显示界面会显得干净而清新,在下雨或者下雪天则会变得潮湿而模糊。如果你想要发送短信或者打一通
### VGG16模型源码解析
VGG16是一种经典的深度卷积神经网络模型,它由Oxford的Visual Geometry Group开发。VGG16在ImageNet数据集上取得了很好的性能,因此成为了许多计算机视觉任务的首选模型之一。在本文中,我们将深入探讨VGG16的PyTorch源码,并对其进行详细解析。
#### VGG16网络结构
VGG16网络结构非常简单,由13个卷积层和3
原创
2024-06-23 04:06:53
102阅读
lecture 6:VGG13、16、19目录 lecture 6:VGG13、16、19目录1、VGG结构2、VGG结构解释3、3*3卷积核的优点4、VGG的 Multi-Scale方法5、VGG应用 1、VGG结构 LeNet5用大的卷积核来获取图像的相似特征 AlexNet用9*9、11*11的滤波器 VGG 巨大的进展是通过依次采用多个 3×3 卷积,模仿出更大的感受野(r
前言:CNN系列总结自己学习主流模型的笔记,从手写体的LeNet-5到VGG16再到历年的ImageNet大赛的冠军ResNet50,Inception V3,DenseNet等。重点总结每个网络的设计思想(为了解决什么问题),改进点(是怎么解决这些问题的),并使用keras的两种定义模型的方式Sequential()和Functional式模型实现一遍(加深对模型理解的同时熟悉keras的使用)
# 如何使用 PyTorch 下载 VGG16
VGG16 是一种流行的深度学习模型,广泛用于计算机视觉任务。在 PyTorch 中,我们可以方便地下载和使用 VGG16 模型。本文将介绍如何实现这个过程,适合刚入行的开发者,并提供详细的步骤和代码示例。
## 流程概览
以下是使用 PyTorch 下载 VGG16 的简单步骤:
| 步骤 | 描述 |
| --- | --- |
| 1
pytorch使用GRU等做时序预测的Dataloader如何构建一、本文所关注的内容二、时序数据与非时序数据的区别三、时序数据要不要设置`shuffle=True`四、`Dataloader`中的shuffle到底shuffle了什么。 一、本文所关注的内容本文主要聚焦以下几个问题:pytorch的Dataloader中设置shuffle=True的时候究竟打乱的是什么在构建时序数据的时候,可
简介本节主要是介绍我怎么用上一节实现的UNet进行训练,一共分成3部分进行说明。需要强调的是,本节中的数据集以及很多模型训练想法都是来自【Keras】基於SegNet和U-Net的遙感圖像語義分割,我主要的工作就是将keras的代码用pytorch进行了实现。在上面的链接里,该作者对他们设计模型以及数据处理进行了较为详细的介绍。刚开始我自己用pytorch实现了训练的模型,但是感觉并不是很好,主要
一、基于tensorflow的vgg16:识别猫狗数据集1 import os, shutil
2 current_dir = (r"E:\人工智能\猫狗数据集\dogs-vs-cats") # 当前目录
3 current_dir[0]
4 base_dir = current_dir[0] + ':/人工智能/cats_dogs_small'
5 os.mkdir(base_dir)
转载
2024-03-29 12:32:30
192阅读
在我们的实际项目中,一般不会直接从第一层直接开始训练,而是通过在大的数据集上(如ImageNet)训练好的模型,把前面那些层的参数固定,在运用到我们新的问题上,修改最后一到两层,用自己的数据去微调(finetuning),一般效果也很好。所谓finetuning,就是说我们针对某相似任务已经训练好的模型,比如CaffeNet, VGG-16, ResNet等, 再通过自己的数据集进行权重更新, 如
转载
2024-02-19 19:24:35
114阅读