文章目录前言一、UNETR网络结构二、代码1.引入库2.辅助函数和自定义keras层3.构建Vision Transformer4.构建完整UNETR5.简单测试 前言 现在在尝试各种网络做医学图像分割,这算是我第一次开始尝试Transformer-CNN的图像分割方法。首先想试试这个用完整Vision Transformer(ViT)做编码器的UNETR,可惜这次网上甚至找不到公开的Tens
UNETR: Transformers for 3D Medical Image Segmentation摘要自过去十年以来,具有收缩和扩展路径的完全卷积神经网络(FCNN)在大多数医学图像分割应用中显示出突出的地位。在FCNNs中,编码器通过学习全局和局部特征以及可由解码器用于语义输出预测的上下文表示来发挥不可或缺的作用。尽管它们取得了成功,但FCNN中卷积层的局部性限制了学习长程空间依赖性的能
转载
2024-05-06 15:29:25
447阅读
参考:PyTorch官方教程中文版实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet, 然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。迁移学习的2种场景:1、微调Convnet:使用预训练的网络(如在imagene
转载
2024-01-13 21:02:35
60阅读
序言本文整理于作者知乎原文:研习UNet,UNet++的作者在知乎讲的非常仔细,感兴趣的可以直接去围观,这里只是为了方便记忆做个总结。正文一、图像分割背景在计算机视觉领域,全卷积网络(FCN)是比较有名的图像分割网络,医学图像处理方向,U-Net可以说是一个更加炙手可热的网络,基本上所有的分割问题,我们都会拿U-Net先看一下基本的结果,然后进行“魔改”。UNet和FCN对比:两者...
原创
2021-11-18 17:19:44
4980阅读
向AI转型的程序员都关注了这个号Unet++网络Dense connectionUnet++继承了Unet的结构,同时又借鉴了DenseNet的稠密
转载
2024-04-25 10:38:11
189阅读
深度学习在一些传统方法难以处理的领域有了很大的进展。这种成功是由于改变了传统机器学习的几个出发点,使其在应用于非结构化数据时性能很好。如今深度学习模型可以玩游戏,检测癌症,和人类交谈,自动驾驶。深度学习变得强大的同时也需要很大的代价。进行深度学习需要大量的数据、昂贵的硬件、甚至更昂贵的精英工程人才。在Cloudera Fast Forward实验室,我们对能解决这些问题的创新特别兴奋。我们最新的研
最近对迁移学习比较感兴趣,连续读了几篇和迁移学习相关的文章。本次博客首先来总结几篇迁移学习在NLP领域的应用。NIPS(美国高级研究计划局)2005年给迁移学习一个比价有代表性的解释:transfer learning emphasizes the transfer of knowledge across domains, tasks, and distributions that are sim
自从transformer应用到cv领域以后,对图片的分割需求便越加重了,但是图像分割说起来容易,实际操作起来还是有很多地方不懂(主要还是code能力太弱)。我们知道,对张量的处理一般又两种,一种是view/reshape这样的,先将数据按行展开,再按照指定形状排列数据;另一种是permute/transpose这种,是把数据按照维度进行变化,也就是把数据排列的先后顺序转换一下(后面具体介绍)。所
转载
2023-08-05 22:56:18
295阅读
unnet
转载
2010-08-11 18:05:43
892阅读
迁移学习和微调的区别1.举例说明当我们遇到一个新任务需要解决时,迁移学习和微调可以帮助我们更快地学习和完成这个任务。迁移学习就像是我们已经学会了一些与目标任务相关的知识,然后我们可以将这些知识应用到新任务中。 类比一下,就好像我们之前学会了画猫的技巧,现在我们要画一只狗,我们可以借用之前学到的知识和技巧,来更好地画出这只狗。微调是迁移学习的一种具体方法,它的思路是利用已经训练好的模型来帮助我们完成
转载
2024-04-12 06:14:01
159阅读
前言 最近学习了Unet、Unet++和UNet3+模型,并且对这三者进行了一些研究,并将其作为组会上报告的内容,效果还是不错,因此趁自己还记得一些,写一个博客记录一下,方便后续复习,不得不说Unet模型还是很强大的,也难怪Unet模型现在很火,值得一学。一、FCN全卷积网络模型 FCN网络模型全称为全卷积神经网络模型(Fully Convolution Network),该模型是2015年由
转载
2023-02-05 07:59:42
3646阅读
一、联邦学习的定义 横向联邦学习和纵向联邦学习要求所有的参与方具有相同的特征空间或样本空间,从而建立起一个有效的共享机器学习模型。然而,在更多的实际情况下,各个参与方所拥有的数据集可能存在高度的差异,例如:参与方的数据集之间可能只有少量的重叠样本和特征,并且这些数据集的规模与分布情况可能差别很大,此时横向联邦学习与纵向联邦学习就不是很适合了。在这种情况下,通过迁移学习技术,使其可以应用于
树的父指针表示法
原创
2021-08-08 10:18:25
239阅读
1. 前言 迁移学习(Transfer Learning,TL)对于人类来说,就是掌握举一反三的学习能力。比如我们学会骑自行车后,学骑摩托车就很简单了;在学会打羽毛球之后,再学打网球也就没那么难了。对于计算机而言,所谓迁移学习,就是能让现有的模型算法稍加调整即可应用于一个新的领域和功能的一项技术。 不久前,香港科技大学的杨强教授在机器之心GMIS大会中回顾AlphaGo和柯洁的
转载
2023-06-03 22:49:30
314阅读
文章目录1. 迁移学习简介2. 多分类问题实例2.1 构建数据2.2 问题1的MLP模型2.3 问题2的MLP模型2.4 问题2使用迁移学习的MLP模型2.5 特征提取与权重初始化性能对比 代码环境:python-3.7.6tensorflow-2.1.0深度学习神经网络的一个优势是可以在相关问题上重用。迁移学习(Transfer learning)指的是对某种程度上相似的问题进行预测建模的技术
转载
2023-10-19 10:54:25
157阅读
本文以将PyTorch框架实现的网络迁移至MindSpore框架为例,并以计算机视觉常用算子做代码示例。1. 训练过程中损失变化异常具体表现数值过大或过小损失不下降损失波动大损失值恒定损失为负数问题原因以及排查、解决办法网络结构存在问题排查方法:逐行代码对比;将原框架网络的checkpoint文件导入到迁移网络中,例如将pytorch的.pth文件转换成mindspore支持的.ckpt文件,然后
转载
2023-08-02 21:44:36
192阅读
【深度学习】总目录语义分割的U-Net网络是2015年诞生的模型,它几乎是当前segmentation项目中应用最广的模型。Unet能从更少的训练图像中进行学习,当它在少于40张图的生物医学数据集上训练时,IOU值仍能达到92%。Unet网络非常简单,前半部分作用是特征提取,后半部分是上采样。在一些文献中也把这样的结构叫做编码器-解码器结构。由于此网络整体结构类似于大写的英文字母U,故得名U-ne
转载
2023-02-26 19:14:00
929阅读
作者丨Error@知乎 导读本文先厘清了语义分割、实例分割和全景分割等定义的区别。在此基础上,进一步分析了FCN、Unet、Unet++等算法在医学图像上的适用情况。先上目录:相关知识点解释FCN 网络算法的理解Unet 网络算法的理解Unet++ 网络算法的理解Unet+++ 网络算法的理解DeepLab v3+ 算法简阅Unet在医学图像上的适用与CNN分割算法的简要总结一、相关知识点解释1
转载
2024-03-04 14:59:20
970阅读
2020-11-18 13:40:43机器之心分析师网络作者:仵冀颖编辑:H4O在这篇文章中,作者通过 4 篇论文详细介绍了联邦学习中的联邦迁移学习问题,并探讨了向能获得较好的处理效果,如 ImageNet 等。然而在一些应用领域中,例如医学领域、经济学领域以及一些政务信息化领域中,
转载
2020-11-26 12:15:21
1176阅读
海量训练数据是现代机器学习算法、人工智能技术在各个领域中应用获得成功的重要条件。例如,计算机视觉和电子商务推荐系统中的 AI 算法都依赖于大规模的标记良好的数据集才能获得较好的处理效果,如 ImageNet 等。然而在一些应用领域中,例如医学领域、经济学领域以及一些政务信息化领域中,海量的可用训练数据往往是非常有限的。存在这些问题的主要原因:一是,针对机器学习算法的数据标注任务需要专业的知识和经验
原创
2021-04-12 17:31:45
118阅读