1、直方图法       方法描述:有两幅图像patch(当然也可是整幅图像),分别计算两幅图像的直方图,并将直方图进行归一化,然后按照某种距离度量的标准进行相似的测量。       方法的思想:基于简单的向量相似来对图像相似进行度量。       优点:直方图能够很好的归
图像相似
原创 1月前
342阅读
1点赞
     对输入的两张图像进行直方图均衡化及直方图计算步骤后,可以对两个图像的直方图进行对比,两张图像的直方图反映了该图像像素的分布情况,可以利用图像的直方图,来分析两张图像的关系。        如果我们有两张图像,并且这两张图像的直方图一样,或者有极高的相似,那么在一定程度上,我们可
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Random sample consensus,RANSAC)单应性矩阵 Brute-Force蛮力匹配  通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf
转载 2023-12-07 08:17:37
169阅读
NCC概述基于Normalized cross correlation(NCC)用来比较两幅图像相似程度已经是一个常见的图像处理手段。在工业生产环节检测、监控领域对对象检测与识别均有应用。NCC算法可以有效降低光照对图像比较结果的影响。而且NCC最终结果在-1到1之间,所以特别容易量化比较结果,只要给出一个阈值就可以判断结果的好与坏。NCC数学知识们也可以通过各自的积分图计算预先得到。这样就完成
# 使用 OpenCV 计算图像相似 在如今的计算机视觉领域,图像相似计算是一个常见且重要的任务。通过 OpenCV(Open Source Computer Vision Library),我们可以有效地比较两张图像相似性。本文将带您逐步了解如何在 Python 中使用 OpenCV 实现图像相似计算。 ## 流程概述 我们可以将整个过程分为以下几个步骤: | 步骤 | 描述
原创 7月前
123阅读
OpenCV Python 直方图直方图什么是直方图直方图的作用敲程序下面为使用Python的OpenCV和matplotlib来编写几个samples程序来实际感受一下图像的直方图:使用matplotlib计算直方图代码 import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('~/P
直方图比较方法-概述对输入的两张图像计算得到直方图H1与H2,归一化到相同的尺度空间 然后可以通过计算H1与H2的之间的距离得到两个直方图的相似程度进 而比较图像本身的相似程度。Opencv提供的比较方法有四种:Correlation 相关性比较 -(计算结果范围为 -1到1 -1很不相关,1完全一样 )Chi-Square 卡方比较 -(计算结果越接近0,两个直方图越相似)Intersecti
转载 2023-08-28 14:03:08
527阅读
  最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程。但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜索的流程整理一下,想到什么说什么吧。  首先在进行图片灰度化处理之前,我觉得有必要了解一下为什么要进行灰度化处理。图像灰度化的目的是什么?  将彩色图像转化为灰度图像的过程是图像的灰度化处理。彩色
转载 2024-06-13 20:32:54
480阅读
图像的直方图表示图像的灰度值统计特性,有时可以通过比较两幅图像的直方图来衡量两幅图像相似程度。虽然两幅图像的直方图分布相似不代表两幅图像相似,但两幅图像相似,则两幅图像的的直方图分布一定相似。例如,通过插值对图像进行缩放后,图像的直方图虽然不会与之前完全一致,但是两者之间一定具有很高的相似性,因而可以通过比较两幅图像的直方图分布的相似性对图像进行初步的筛选与识别。OpenCV提供了用于比较两幅图
转载 2023-11-13 17:35:18
209阅读
1.概念这里说的是OpenCV中实现的Meanshift算法的大体概念。 在OpenCV中meanshift算法的原理,大体上是这样的: 首先,预先定义一个窗口(可以通过openCv中的ROI在图像上定义一个感兴趣的窗口),然后计算窗口内所有像素(数据)点的重心,然后将窗口中的中心移动到重心点。重复这个过程,直到满足迭代终止条件。 OpenCV2中,实现meanshift算法的函数是:cv::me
1.cosin相似(余弦相似)把图片表示成一个向量,通过计算向量之间的余弦距离来表征两张图片的相似   # -*- coding: utf-8 -*- # !/usr/bin/env python # @Time : 2018/11/17 14:52 # @Author : xhh # @Desc : 余弦相似计算 # @File : difference_i
什么是图像相似性度量?图像相似性度量是测量两幅图像相似程度。这个定义看起来没有做什么解释,实际上图像相似性度量就像它的名字一样容易理解,通过度量的方式测度两幅图像到底有多么一样。相似性度量能做什么?从自顶向下的思维出发,研究完what is it ? 就该what can it do ?目前学术中最常用的场景是做目标追踪、位置获取,在一些算法如blobTracking,Meanshift,Cam
无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。计算图片相似的应用很广泛,如google、baidu、360等搜索引擎以图搜图的功能就是其典型应用相似图像去重一般分为如下两个步骤 1、图像特征表达的提取 2、图像之间相似计算两个主要步骤。对于图像特征表达的提取,常见的手工设计特征有颜色、纹理、HO
3、利用直方图判断两张图片的是否相似的方法就是,计算其直方图的重合程度即可。计算方法如下:其中gi和si是分别指两条曲线的第i个点。最后计算得出的结果就是就是其相似程度。不过,这种方法有一个明显的弱点,就是他是按照颜色的全局分布来看的,无法描述颜色的局部分布和色彩所处的位置。也就是假如一张图片以蓝色为主,内容是一片蓝天,而另外一张图片也是蓝色为主,但是内容却是妹子穿了蓝色裙子,那么这个算法也很可能
一,直方图比较方法概述:对输入的两张图像计算得到直方图H1和H2,归一化到相同的尺度空间(如果比较的两个图像的大小不一致,计算直方图后得到的像素频次不一致,无法比较,必须归一化到相同的尺度空间才可以比较) 然后通过计算H1和H2的之间的距离得到两个直返图的相似程度进而比较图像本身的相似程度.OpenCV提供的比较方法有四种:1:Correlation 相关性比较: :是均值 ,为直方图区间(bi
# iOS OpenCV图像相似对比:技术解析与实践 在图像处理领域,图像相似对比是一个重要的研究方向。通过比较两幅图像相似,我们可以判断它们是否具有相同的视觉内容。在iOS开发中,OpenCV是一个广泛使用的计算机视觉库,它提供了丰富的图像处理和计算机视觉功能。本文将介绍如何使用OpenCV在iOS上进行图像相似对比。 ## 1. OpenCV简介 OpenCV(Open Sou
原创 2024-07-17 09:38:01
171阅读
    本文主要参考了<OpenCV 2 Computer Vision Application Programming Cookbook>和<The OpenCV Reference Manual>。首先讨论了几个基本的结构:cv::Mat,cv::Mat_;随后讨论了遍历图像的两种方式:Pointer和Iterators,以及速度优化的注意
转载 10月前
31阅读
  一、BoW算法  用OpenCV实现了最简单的BoW算法进行了一次小规模的图像检索任务,使用UKbench数据库,算法原理和网上的描述差不多,使用K-means算法进行聚类,这里使用KDTree算法进行特征量化,按照自己的理解计算了TF-IDF权重,使用余弦距离计算图像之间的相似性。下面给出关键函数依赖于OpenCV的实现:如TF-IDF权重的计算,这里只是按照自己的理解实现了算法,
原模板匹配方法中,是无法进行任意角度和旋转匹配的,但我们在实际的使用中,模板图像的位置和方向都是不确定的,因此,就需要我们对模板图像进行预处理,处理后在进行模板匹配。基本处理方法如下:模板图像读取进行模糊绘制轮廓形态学处理提取轮廓获取当前位置角度图像旋转。原图读取从4个角度进行模板匹配(0°,90°,180°,270°)记录每个角度的匹配值进行后续操作。1:原图如下所示:2:模板图像如下所示:3:
  • 1
  • 2
  • 3
  • 4
  • 5