原理:直方图均衡化就是对整个图像的非线性对比度拉伸,使得灰度动态范围扩展到0到255。均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒;②如果是八位图像,那么像素映射函数的值域应在0和255之间的,不能越界。综合以上两个条件,累积分布函数是个好的选择,因为累积分布函数是单调增函数(以原始灰度值
目录直方图均衡化 图像直方图直方图的计算和绘制直方图对比反向投影模板匹配 直方图均衡化 直方图均衡化是通过拉伸像素强度分布范围来增强图像对比度的一种方法应用场景: 应用于图像增强处理。(灰度转换)void equalizeHist(InputArray src, OutputArray dst)参数1,输入图像,需
一. 原理直方图均衡化是想要将聚集在某一区间内分布的灰度值,变为均匀的在所有区间内分布。为了达到这一目的,我们需要找出一个函数T,将r(原图像灰度)映射到s(新图像灰度)上。同时,由于不想将图像反转,我们需要保证函数单调不减(若需要逆运算,则要严格单调递增)\[s=T(r)
\]设\(p_r(r)\)为r的概率分布函数,\(p_s(s)\)为s的概率分布函数,则两者关系如下\[p_s(s)=p_r
图像均衡化 图像均衡化是一种图像处理技术,它的目的是改善图像的对比度。 具体来说,对于一张图像,其直方图就是统计图像中各灰度级出现的次数的图像。通常情况下,图像的直方图会呈现不平衡的状态,即图像的某些灰度级出现的次数很多,而其它灰度级出现的次数很少。这样的图像在显示时,可能会出现对比度差的问题,使得图像看起来比较暗或者模糊。 图像均衡化就是对图像进行直方图均衡,
1. 直方图均衡化介绍 自我感觉书上讲的很清楚,直接把截图贴上了。 在进行直方图均值化的过程如下 读入图像对每个通道分别统计像素值[0,255]出现的次数。对每个通道分别求像素值[0,255]出现的概率,得到概率直方图。对每个通道分别求像素值[0,255]概率的前缀和,得到累计直方图。对每个通道根据
原创
2022-06-27 19:49:22
400阅读
1.方法简介:直方图均衡化通常用来增加许多图像的全局对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X光图像中更好的骨骼结构显示以及曝光过度或者曝光不足照片中更好的细节。这
如果一副图像的像素占有很多的灰度级而且分布均匀,那么这样的图像往往有高对比度和多变的灰度色调。直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像原取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。对于连续图像,我们用
昨天说了,今天要好好的来解释说明一下直方图均衡化。并且通过不调用histeq函数来实现直方图的均衡化。 一、直方图均衡化概述(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等。这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是
直方图均衡化有以下几个好处:增强图像对比度:直方图均衡化可以通过重新分配像素值来增强图像的对比度。这可以使得图像中的细节更加清晰可见,从而提高图像的质量和可读性。均衡化图像亮度:直方图均衡化可以将图像的亮度均衡化,使得图像的整体亮度更加均匀,从而避免了图像中出现过亮或过暗的区域。提高算法效果:直方图均衡化可以改善图像的质量和可读性,从而提高了图像处理算法的表现。例如,在图像分割、目标检测和人脸识别
一、直方图均衡化概述 直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等。这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小的话,会产生粗略分类的视觉效果。[1] 根据香农定理
一、基本原理1.1直方图均衡化(一提高图像的对比度,二使像素值几乎成均匀分布的图像0表示黑,1表示白,中心思想是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布,增加许多图像的局部对比度,亮度可以更好的在直方图上分布。) 灰度级的直方图就是反映一幅图像中的灰度级与出现这种灰度的概率之间的关系的图形。设变量代表图像中的像素灰度级。在图像中,像素的
直方图均衡化直方图均衡化(Histogram equalization)是一种常用的灰度变换方法。基本原理直方图均衡化的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并,把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。从而增大对比度,使图像清晰,达到增强的目的。直方图均衡化就
直方图均衡化的作用是图像增强。 有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布。 第一个问题。均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒;②如果是八位图像,那么像素映射函数的值域应在0和255之间的,不能越界。综合以上两个条件,累积分
直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等。这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小的话,会产生粗略分类的视觉效果。
文章目录1、问题描述HSL空间下的图像,H(色相),色彩的基本属性,就是平常说的颜色名称,如红色,黄色等。S(饱和度),指的是色彩的纯度,饱和度
原创
2023-01-04 18:06:41
232阅读
1、直方图均衡化1.1 什么是直方图均衡化直方图均衡化是将将图像中比较聚集的像素“打散”
原创
2023-01-04 18:10:16
470阅读
算法
经典算法 下面以一幅3*2像素的简单图片(图C)为例,来说明灰度直方图均衡化的算法。 (图C) 图C的直方图: 百分位(Percentile)这一项。一般软件的百分位是 当前色阶的像素数量÷总像素数量,而Photoshop不同,Photoshop显示的是 当前色阶与前面色阶的所有像素数量÷总像素数量。因此图C色阶为100时的百分位就是(3+2)/6=5/6=
1、 直方图对于一幅图像的每个灰度级的像素个数进行统计,得到每个灰度级占整张图像的比例: n_k为灰度等级k的像素数量,N为整幅图像的像素数总和。 将各个灰度级的像素数量绘制为条形图就是直方图了2、 直方图均衡化一幅对比度较小的图像其直方图分布一定集中在一个比较小的灰度级范围内,想要更好多的展现图像的细节信息,可以对直方图进行均值化,使得各个灰度级的占比(大致)相同,这样就加大了图像的对比度。 直
直方图均衡化又称为灰度均衡化,是指通过某种灰度映射使输入图像转换为在每一灰度级上都有近似相同的输出图像(即输出的直方图是均匀的)。在经过均衡化处理后的图像中,像素将占有尽可能多的灰度级并且分布均匀。因此,这样的图像将具有较高的对比度和较大的动态范围。直方图均衡可以很好地解决相机过曝光或曝光不足的问题。 一、MATLAB实现%-------------------------------------
目录前言课题背景和意义实现技术思路实现效果图样例前言 ?大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。?