前言  使用透视变换可以完成2D到3D的转换,可以简单的想象为将照片上的人脸图像按照一定的角度进行多点拉扯形成3D图像,然后根据角度来判断姿态。使用的方法原理为使用2D平面上人脸的特征点和3D空间内对应的坐标点,按照求解pnp问题的思路。找到一个映射关系,从而估计头部的姿态。一、基础知识1.相机坐标系到像素坐标系如图1,P(Xc,Yc,Zc)为相机成像中的实体点坐标,而p(x,
# Python检测运动姿势实现指南 作为一名经验丰富的开发者,我将教会你如何使用Python实现运动姿势检测。首先,让我们了解整个过程的流程,并使用表格展示每个步骤。然后,我将逐步告诉你每个步骤需要做什么,并提供相应的代码示例。 ## 流程图 ```mermaid flowchart TD A[准备数据集] --> B[导入必要的库] B --> C[加载和预处理数据]
原创 2023-12-15 05:42:18
89阅读
六种人体姿态估计的深度学习模型和代码总结姿态估计的目标是在RGB图像或视频中描绘出人体的形状,这是一种多方面任务,其中包含了目标检测、姿态估计、分割等等。有些需要在非水平表面进行定位的应用可能也会用到姿态估计,例如图形、增强现实或者人机交互。姿态估计同样包含许多基于3D物体的辨认。在这篇文章中,Model Zoo的作者汇总了几种开源的深度学习模型以及针对姿态估计的代码,论智对其进行了编译,如有遗漏
【代码】rknn头部检测api调用。
原创 2023-05-18 17:03:16
168阅读
在调试bug中提高自己,送给所有调试bug迷茫的朋友们1.需要进行类型转换:RuntimeError: Found dtype Long but expected Float即发现dtype是Long,但是期待的是FloatRuntimeError: Found dtype Long but expected Float将得到的loss值进行类型转换 解决方法:loss = torch.
转载 2023-12-20 22:10:04
248阅读
oak深度相机入门教程-识别头部姿势
原创 2023-02-25 00:19:27
107阅读
人体关键点检测(Human Keypoints Detection)又称为人体姿态估计2D Pose,是计算机视觉中一个相对基础的任务,是人体动作识
作者丨paopaoslam编辑丨3D视觉工坊标题:Depth-Aware Mirror Segmentation作者:YHaiyang Mei ,Bo Dong , Wen Dong,Pieter Peers, Xin Yang, Qiang Zhang,Xiaopeng Wei机构:Dalian University of Technology编译:Cristin审核:  zhh摘要大
目标检测是对图像中存在的目标进行定位和分类的过程。识别出的物体在图像中显示为边界框。一般的目标检测有两种方法:基于区域提议的和基于回归/分类的。在本章中,我们将使用一个名为YOLO的基于回归/分类的方法。YOLO-v3是该系列的其中一个版本,在精度方面比以前的(YOLOV1、YOLOV2)版本表现更好。因此,本章将重点介绍使用PyTorch开发的Yolo-v3。 在本章中,我们将学习如何实现YOL
一、环境搭建当前:Windows10 + Anaconda3.61.1 创建PyTorch的虚拟环境打开Anaconda中的Anaconda Prompt那个黑框框,输入:#注意这里pytorch是自己设置的虚拟环境名称,可以随意取 conda create --name pytorch python=3.6之后输入y,创建pytorch虚拟环境。以下是一些常规命令:#进入到虚拟环境 activa
转载 2023-07-28 15:38:09
180阅读
所有目标检测已成为动作识别研究的重要垫
原创 2021-07-16 16:20:02
1142阅读
整体介绍 使用 TensorFlow, 你必须明白 TensorFlow:使用图 (graph) 来表示计算任务.在被称之为 会话 (Session) 的上下文 (context) 中执行图.使用 tensor 表示数据.通过 变量 (Variable) 维护状态.使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据. 一个 Tens
转载 2024-09-19 16:28:10
46阅读
入门pytorch似乎不慢,写好dataloader和model就可以跑起来了,然而把模型搭好用起来时,却往往发觉自己的程序运行效率并不高,GPU使用率宛如舞动的妖精...忽高忽低,影响模型迭代不说,占着显存还浪费人家的计算资源hh 我最近就是遇到这个困难,花了一些精力给模型提速,这里总结一下(有些描述可能并不准确,但至少这些point可以借鉴hh,不妥之处恳请大家指正/补充啦)dataloade
跌倒检测思路分享
AI
原创 2021-06-23 09:37:38
893阅读
目标检测(object detection)一、 介绍在图像分类任务中,我们假设图像中只有一个主要物体对象,我们只关注如何识别其类别。 然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。 在计算机视觉里,我们将这类任务称为目标检测(object detection)或目标识别(object recognition)。 目标检测所关注的问题:分类:
目录图像中的目标检测视频中的目标跟踪作者有言在文章《基于 PyTorch 的图像分类器》中,介绍了如何在 PyTorch 中使用您自己的图像来训练图像分类器,然后使用它来进行图像识别。本篇文章中,我将向您展示如何使用预训练的分类器检测图像中的多个对象,然后在视频中跟踪它们。图像分类(识别)和目标检测分类之间有什么区别?在分类中,识别图像中的主要对象,然后通过单个类对整个图像进行分类。在检测中,在图
这几天一直在做调包侠,是时候来总结总结了。记录一些我所遇到的不常见的问题。faster rcnn:参考代码: jwyang/faster-rcnn.pytorchgithub.com pytorch代码调试,相较于tensorflow的版本要友好一些,不用创建软连接啥的,数据集直接复制voc2007就行(暂时没有尝试coco),不过要注意如果有一个类别是0(就是完全没有目标的
转载 2023-11-16 22:23:10
108阅读
实现网络的前向传播第二部分中,我们实现了 YOLO 架构中使用的层。这部分,我们计划用 PyTorch 实现 YOLO 网络架构,这样我们就能生成给定图像的输出了。我们的目标是设计网络的前向传播。定义网络如前所述,我们使用 nn.Module 在 PyTorch 中构建自定义架构。这里,我们可以为检测器定义一个网络。在 darknet.py 文件中,我们添加了以下类别:class Darknet(
转载 2023-07-18 12:59:39
153阅读
睿智的目标检测23——Pytorch搭建SSD目标检测平台学习前言什么是SSD目标检测算法源码下载SSD实现思路一、预测部分1、主干网络介绍2、从特征获取预测结果3、预测结果的解码4、在原图上进行绘制二、训练部分1、真实框的处理a、找到真实框对应的先验框b、真实框的编码2、利用处理完的真实框与对应图片的预测结果计算loss训练自己的SSD模型一、数据集的准备二、数据集的处理三、开始网络训练四、训
代码地址:https://github.com/xxcheng0708/Pytorch_Retinaface_Accelerate 本文介绍的方法是提升pytorch版本RetinaFace代码在数据预处理阶段的速度,使用纯pytorch框架进行模型推理,并不涉及模型的onnx、tensorrt部署等方法。本文介绍的方法适用于从磁盘加载分辨率相同的一批图像使用RetinaFace进行人脸
  • 1
  • 2
  • 3
  • 4
  • 5