对梯度下降法的简单理解 首先我们应该清楚,一个多元函数的梯度方向是该函数值增大最陡的方向。具体化到1元函数中时,梯度方向首先是沿着曲线的切线的,然后取切线向上增长的方向为梯度方向,2元或者多元函数中,梯度向量为函数值f对每个变量的导数,该向量的方向就是梯度的方向,当然向量的大小也就是梯度的大小。 现在假设我们要求函数的最值,采用梯度下降法,如图所示:
一 介绍
梯度下降法是一个最优化算法,通常也称 最速下降法,常用于机器学习和人工智能中递归性逼近最小偏差模型,梯度下降的方向就是用负梯度方向为搜索方向,沿着梯度下降的方向求解极小值。
在训练过程中,每次的正向传播都会得到输出值和真实值的损失值,这个损失值越小,代表模型越好,于是梯度下降的算法就用在这里,帮助寻找最小的那个损失值,从而可以反推出对应的学习参数b和w,达到优化
转载
2024-05-06 20:29:59
23阅读
梯度下降法是一个一阶最优化算法,通常也称为最陡下降法,要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。介绍梯度下降法之前首先先介绍一下梯度。梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此
转载
2024-05-24 10:26:35
65阅读
原文链接:http://ihoge.cn/2018/GradientDescent.html最近在看机器学习相关的基础算法原理,意外发现一个大神的分享网页,简洁并且语言精炼,思路很清楚,仔细研究会对算法原理有新的理解,另外还有代码分享,可以手码.引言李航老师在《统计学习方法》中将机器学习的三要素总结为:模型、策略和算法。其大致含义如下:模型:其实就是机器学习训练的过程中所要学习的条...
转载
2021-09-01 16:13:48
1075阅读
机器学习10:如何理解随机梯度下降1.梯度下降法 理解随机梯度下降,首先要理解梯度下降法。 大多数机器学习或者深度学习算法都涉及某种形式的优化,优化指的是改变 x以最小化或最大化某个函数的任务, 我们通常以最小化 指代大多数最优化问题, 最大化可经由最小化算法最小化-来实现。&n
SGD(随机梯度下降)详解名词解释SGD vs BGD效率方面优化方面SGD优势SGD劣势 名词解释名词定义original-loss整个训练集上的lossminibatch-loss在一个mini batch上的lossBGD最原始的梯度下降算法,为了计算original-loss上的梯度,需要使用训练集全部数据SGD(近似)计算original-loss梯度时,只使用一个mini batch
转载
2024-05-27 21:20:27
48阅读
参考: https://yjango.gitbooks.io/superorganism/content/ti_du_xia_jiang_xun_lian_fa.htmlhttps://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650720663&idx=3&sn=d9f671f77be23a148d1830448154a
转载
2024-08-21 10:53:10
58阅读
6.梯度下降?①梯度下降是迭代法的一种,可以用于求解最小二乘问题;②在求解机器学习算法的模型参数,即无约束优化问题时,主要有梯度下降(Gradient Descent)和最小二乘法。③在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值;④如果需要求解损失函数的最大值,可以通过梯度上升法来迭代。梯度下降法和梯度上升法可相互转换;⑤在机器学习中,梯度下降法
转载
2024-08-21 10:48:56
89阅读
CS299课程的笔记为什么梯度方向下降最快方向导数定义:函数在某一特定方向上的
原创
2022-08-04 22:00:31
296阅读
首先是对感知器的简单回顾,假设现有的训练集为 D,共有 n 个训练数据,每个数据都有 m 个输入特征和一个输出标签。一个 epoch 就是遍历一次整个训练集,对于每一个训练数据,都计算其预测、计算误差、更新参数。 在一个 epoch 中,每次针对一个训练数据进行参数更新的方法,称为在线方法或者随机梯度下降;而在一个 epoch 中将参数在每个训练数据上需要更新的值记录下来,最后叠加在一起再对参数
转载
2024-03-07 10:05:55
190阅读
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。下面我们以线性回归算法来对三种梯度下降法进行比较。一般线性回归函数的假设函数为: 对应的损失函数为:&nb
转载
2024-04-03 20:27:51
78阅读
梯度下降法是一种求函数最小值的算法。在机器学习中,预测值和实际值之间的差称为误差。将所有数据点上的所有误差加在一起时称为成本。当然,我们希望最小化代表此成本的函数 - 成本函数。在机器学习中梯度下降是什么意思呢?通过使用称为反向传播的技术来训练神经网络。梯度下降是反向传播的一个非常重要的部分。梯度下降法是一种非常流行的方法来调整机器学习模型的参数,以达到最小的误差状态。机器学习算法是告诉机器学习数
转载
2024-03-26 16:00:50
130阅读
随机梯度下降法1. 概念 那个梯度值准确的求出来。 那么通过推导的这个公式可以看出来,要想求出这个准确的梯度来,在这个式子中每一项都要对所有的样本( 个)进行一下计算,前面是有一个求和计算的,那么这样的一个下降法通常又叫做批量梯度下降法(Batch Gradient Descent)。也就是说,每一次计算的过程都要将样本中所有的信息批量的进行计算,但是这显然就带来了一个问题,如果我们的 个样
转载
2024-05-08 18:52:07
251阅读
梯度下降法本算法由梯度下降所引申: 对于优化问题: 使用梯度下降: 注意,alpha也是可以算的:求一个a使得f(x0+aP0)最小,是求函数极值的,这时候是关于a的一个函数,所以对a求导求极小值,复合函数求导法则最后就会得到求导等于0,这时候的点是驻点,就是导数值为0的点,因为二阶导数黑塞矩阵正定,所以一定为极小值点。这时候就求出了在P0方向上的最小值点。 图中()意味内积。共轭和预备知识共轭:
转载
2024-05-08 11:46:28
173阅读
原创
2021-07-13 14:49:11
583阅读
调节学习率 微分大小意味着离最小值的距离 c点和a点c的微分较大,但是离最低点更近。 那么微分大小意味着离最小值的距离仅在不跨元素时才成立 考虑到二次微分 左边 :走的稳定右边: 步伐小,散乱。但快 feature scaling 特征缩放 w2的变化对y影响大w1的变化对y(loss)影响小,微分
转载
2020-02-14 22:15:00
166阅读
2评论
梯度下降是不同于Normal Equals的方式;梯度本质是一个试错过程,不断的尝试一个个theta,寻找能够使的成本函数值最小的可能性。所谓下降是指不断的theat的取值是不断小步减少的;梯度,是指这个减少是逐渐,非线性的。 梯度下降有三种常见的函数:批量梯度下降,随机梯度下降以及最小化梯度下降。 先来看批量梯度下降,在Normal Equal里面我们接触了函数MSE,那么在梯度下降里面我们还是...
转载
2018-08-13 20:21:00
281阅读
2评论
梯度下降法又叫最速下降法,英文名为steepest descend method.估计搞研究的人应该经常听见这个算法吧,用来求解表达式最大或者最小值的,属于无约束优化问题。 首先我们应该清楚,一个多元函数的梯度方向是该函数
转载
2016-05-11 21:33:00
400阅读
2评论
梯度下降 ( "Boyd & Vandenberghe, 2004" ) 一维梯度下降 证明:沿梯度反方向移动自变量可以减小函数值 泰勒展开: $$ f(x+\epsilon)=f(x)+\epsilon f^{\prime}(x)+\mathcal{O}\left(\epsilon^{2}\rig
原创
2021-08-06 10:07:47
367阅读
1 算法简介思考:我们给出一组房子面积,卧室...
转载
2019-10-28 10:22:00
321阅读
2评论