前言天下武功中,哪个是最简单,最实用的了?那当然是程咬金的三板斧。传说中,程咬金晚上睡觉,梦见一老神仙,教了他三十六式板斧,这套功夫威力极大,而且招式简单,十分适合程咬金,但是程咬金醒来之后就只记住了三招,便有了这三板斧。就是这简单的三板斧,帮助李世民建立大唐江山。这个教程将以简单,有效,实用为原则,让大家也能简单入门Python数据分析,学会这三板斧,让读者以后在学习数据分析的过程中,
如今,大数据的潜入各行各业以及我们的生活,同时大数据已经开始广泛的应用于电网运行及优质服务等等各大领域。最重要的是它引领了大数据人才的变革。但是,大数据这个行业就业前景怎么样呢?这对于迷茫的我们来说是非常重要的信息。近几年大量的高校都已经开始开设了大数据专业,所以我们可以预料到的便是真正的竞争压力即将开始。01. 大数据人才需求及现状分析从目前来看,随着我们国家渐渐的开始对大数据进行重视,我国政府
每个企业里的每个部门、每个团队都拥有潜在的高价值数据宝库,但很可惜其中的73%未被使用到,因为缺乏相应的数据整合工具,所以ETL是解决这个问题的很好办法。然而,最初的ETL流程是为十年前的业务需求而构建的,现在的时代已经变了。当今的企业拥有的数据源数量正在以非常高的速度增长着,有研究表明,现代企业可以在其的环境中拥有多达400个企业应用程序,以及产生大量数据的社交媒体平台和移动技术。为了整合这一切
对于数据分析,我发现很多运营都有这样一些困惑:不知道从哪里获取数据;不知道用什么样的工具;不清楚分析的方法论和框架;大部分的数据分析流于形式。其实,数据分析并没有大家想象的那么难概念:数据数据分析大家一直在说收集数据数据分析,但是对于两者具体的定义又很难说清楚。很多人都会先入为主,认为数据就是各种表格、各种数字,例如excel报表、各种数据库。其实这是一个错误或者说有偏差的认识,它会使得我们对
数据分析的广阔前景 Mr.林:数据分析作为一个新的行业领域正在全球迅速发展,它开辟了人类获取知识的新途径。 目前,数据库技术、软件工具、各硬件设备飞速发展,在这些软硬件技术与设备的支 持下,信息技术应用已在各行各业全面展开,尤其是对通信、互联网、金融等行业的发展 做出了巨大贡献,并且经过长期的应用积累大量丰富的数据。但大部分企业对其存储信息 利用率极低。庞大的历史数据是否有价值?有何价值?是否
转载 精选 2011-07-13 15:58:02
299阅读
数据分析师,顾名思义是指那些专门分析数据的人员,分析数据主要是结构化数据,近年来对文本数据分析也越来越多。更加通俗的讲,数据分析师其实是翻译人员,是将数据翻译成结论的人,且这个结论是对方能听懂的。 下面这张有行和列的数据就是结构化数据,也是我们平时分析使用最多的数据。 不同行业的数据分析师,是有一定差别的,有的偏研发岗位,比如数据挖掘工程师、机器学习工程师、数据工程师;有的
随着我国进入大数据时代,很多人对于大数据的发展趋势还处于懵懂的状态,充分提升大数据的应用对于我国各个行业,都会有非常重要和有效的指导性作用。那么,大数据的发展趋势到底是怎样的呢?下面,就让我们一起来了解一下吧。 第一、突破科学理论 大数据的发展十分快速,对于目前已经飞速发展并且极具影响力的互联网一样,对于社会的各个行业来说都是一个新的技术革命,其相关技术的普及,对于科学技术上的
随着数据分析相关领域变得火爆,最近越来越多的被问到:数据分析如何从头学起?其中很多提问者都是商科背景,之前没有相关经验和基础。我在读Buisness Analytics硕士之前是商科背景,由于个人兴趣爱好,从大三开始到现在即将硕士毕业,始终没有停下自学的脚步。Coursera和EDX等平台上大概上过20多门网课,Datacamp上100多门课里,刷过70多门。这篇文章是想谈一谈个人的数据分析学习经
数据是未来发展必然趋势,不懂数据分析很可能在将来会被时代所淘汰,所以现在很多人都争抢学习数据分析,而且很多人都是零基础学习。零基础学习数据分析是有一定难度的,需要大家提前做一些准备。下面,小编就来跟大家盘点一下学习数据分析之前那些必须要做的事。1.统计相关知识统计数据分析的基础,因为数据分析需要对大量数据进行统计分析,大家可以通过对统计的学习,培养数据分析最基本的一些逻辑思维。EXCEL
进入大数据时代以来,企业对于数据分析的要求越来越高,甚至每个岗位都需要具备一定的数据分析能力。而对于大部人而言,仅仅能够通过Excel工具完成基础的数据分析工作。面对比较复杂的数据分析需求的时候,往往无法处理。因此很多人选择通过培训的方式提高数据分析能力。那现在数据分析培训要学习多长时间呢?据了解如果选择面授班的方式学习数据分析培训课程,学习周期大概在4个月左右。而参加在线培训班,学习时间完全可以
有人把学习数据分析分成3种境界:第一层境界外功,就是sql,python…等工具;第二层境界内功,就是业务逻辑方面;第三层境界是内外兼修,可以包打一切。下面来说下什么是数据分析数据分析除了python、sql还需要什么?一、什么是数据分析?很多人可能都不清楚数据分析是什么,简单来说,其实就是针对某个问题,将获取后的数据分析手段加以处理,并发现业务价值的过程。数据分析的基本流程:目标确定——
转载 2024-01-14 20:00:28
10阅读
今天给大家分享一篇关于大数据分析必备知识点总结,下面我们一起来看一下吧。 1.数据、信息和知识是广义数据表现的不同形式。 2.主要知识模式类型有:广义知识,关联知识,类知识,预测型知识,特异型知识 3.web挖掘研究的主要流派有:Web结构挖掘、Web使用挖掘、Web内容挖掘 4.一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理,数据挖掘以及模式评估等基本阶段。 5.
根据我从业这么多年的经验,如果为了尽快找到一份数据分析的工作,需要掌握三个核心的点:数据分析基础(一定的数据思维、统计基础和sql能力)——能做最基本的取数工作数据分析能力(使用各种分析工具、套用数据模型、做可视化报表等)——能做简单的分析工作业务分析经验(熟悉各种业务逻辑和指标体系)——能做复杂的业务拆解因此对新人来说,强烈建议按照下面的学习路径进行学习:一、数据分析常用的思维判断一个人做数据
转载 2024-01-04 18:37:05
113阅读
  统计分析基础 (一)数据统计与图表  1 数据统计1.1 统计17世纪中叶产生并逐步发展起来的一门学科。它是研究如何测定、收集、整理、归纳和分析反映数据,以便给出正确消息的科学。统计广泛地应用在各门学科,从自然科学、社会科学到人文学科,甚至被用来工商业及政府的情报决策之上,目前比较热门的应用:经济,医学,心理学等。随着大数据(Big Data)时代来临,统计
转载 2024-01-14 18:05:50
171阅读
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.  不仅仅是选中的十大算法,其实参加评选的18种
如今,数据分析已经是我们生活中重要的一部分,数据分析的相关工作也越来越受到人们的青睐。在it行业,很多编程语言都可以用来做数据分析的工具,比如Python、B、Matlab等,Python凭借着自身无可比拟的优势,被广泛地应用到数据科学领域中,并成为主流语言。选择Python做数据分析,主要考虑的是Python具有以下优势。 1、语法简单精练,适合初学者入门,Python的语法非常简单,代码的可读
知乎上有个热门问题,做数据分析前景吗?先说我的看法:前景、钱景都会有,但得使对劲。「数据」本身没有价值,价值在于「分析,基于数据和业务的分析是有前景的。」接触到的大厂朋友他们说,单纯的数据分析岗在国内互联网企业多是数据支持型,为产品、市场、供应链等部门服务,不直接产生价值(money)。所以很多数据岗实质上干的是SQL、Excel、Python数据处理,日常写代码跑取数需求。或者更技术一点,做数
  根据IDC数字宇宙研究,到2020年,地球上每个人每秒将创建约1.7兆字节的新信息。要从如此大量的信息中寻找见解,就需要无缝采用大数据技术,更强的数据安全性,以及将AI,机器学习以及认知技术应用程序与业务运营相集成。这就要求对正确的基础架构以及熟练的人才进行投资,以确保精确使用大数据分析平台。  值得注意的是,中国是十大数据分析市场之一,大数据分析行业预计到2025年将增长八倍,从目前的20
数据广泛应用于电网运行、经营管理及优质服务等各大领域,并正在改变着各行各业,也引领了大数据人才的变革。大数据就业前景怎么样?这对于在就业迷途中的我们是一个很重要的信息。随着大数据时代的到来【这次国家教育部也改革动真格了】,程序员们仅有的一点点竞争力很快就不复存在。大军即将进入,全民开始行动了。2019年各大高校都将会开设大数据专业,真正的竞争压力马上就会来了,已经加入大数据行业的同学很幸运,一定
 知识,只有放在具体场景下才是有意义的,不然只是一些概念,并不能真正产生价值。“房子是由石头组成的,但把一些石头简单放在一起,那并不等于就是房子。”分析挖掘应用与算法紧密相关,如果只是知道很多的算法,并不表明你就是一位合格的数据分析师。  分析挖掘领域中的算法(分类、聚类等)相对于《数据结构》课程中的算法(排序、查找等),明显复杂的多。编程语言中集合类被使用的频率非常
  • 1
  • 2
  • 3
  • 4
  • 5