TensorFlow 源码笔记(2): tensorflow的控制流算子(control_flow_op)在阅读TensorFlow源码时,遇到了很多复杂又晦涩的概念,今儿整理以下内容,分享给大家:介绍专门为处理控制流而添加的五个TensorFlow原语运算符,演示如何将高级控制流结构编译为包含这五个原语的数据流图解释TensorFlow运行时如何执行这些数据流图,包括在一组混合设备(如CPU、
1 - Tensorflow源码目录结构基于2018年5月28日github的tensorflow源码,即1.8版本第一层:tensorflow: 核心代码目录。 third_party:第三方库,包括:eigen3,fft2d,hadoop,mkl,probuf ,kafka,mpi,tensorRT,nccl,grpc等等。 tools:只有两个文件 bazel.rc 和 tf_env_col
步骤一:建议先通读TensorFlow Servering官网,对整体概念有大体的认识步骤二:去TF github下载源码。注意,同时下载tensoflow源码,servering会依赖其中的一部分步骤三:开始源码解析目录介绍:api对外服务接口部分batching不知道在干啥configServer的配置参数core模型管理核心部分。包括模型发现,加载,本机资源管理model_servers模型
1 模型结构论文信息:2018年10月,谷歌,NAACL 论文地址 https://arxiv.org/pdf/1810.04805.pdf 模型和代码地址 https://github.com/google-research/bertBERT自18年10月问世以来,就引起了NLP业界的广泛关注。毫不夸张的说,BERT基本上是近几年来NLP业界意义最大的一个创新,其意义主要包括大幅提高了GLUE任
转载 2024-03-18 16:51:33
86阅读
文章目录TensorFlow Python API 升级实用程序Report注意事项测试 没有在 API 文档查看到过关于 tensorflow 版本直接切换的内容,在 tensorflow git 上倒是有介绍 版本升级的工具。自己试了一下发现能解决比较多的问题,但是仍然有一些需要手动修改,比如被移出 tf 的模块。 TensorFlow Python API 升级实用程序允许升级现有的 T
转载 2024-03-15 09:52:47
31阅读
SSD网络tensorflow版本源码深入分析以VGG-16作为特征提取层实现SSD网络的代码,解读SSD网络代码实现的各个细节,从输入参数、默认框的位置匹配、宽高比率、放缩比率、各层默认框的生成、到损失函数计算、整个SSD网络框架代码实现都一一解读。一:SSD网络相关参数代码解析源代码中对SSD网络需要的6个层大小,默认框大小、最小与最大放缩比率、默认框不同宽高比、步长感受野、并交比等参数给出了
原创 精选 2018-10-10 19:22:09
10000+阅读
1点赞
3评论
文章目录简介准备工作生成pb产物移除单侧代码屏蔽“无关”文件添加构建目标serving代码阅读service层资源管理层servable层 简介准备写几个文章来记录对tensorflow代码的阅读。本文主要写tensorflow代码阅读准备及tensorflow-serving代码的阅读。准备工作代码阅读前,还是需要准备一下装备来提升代码阅读效率,好的工具能提升代码阅读的效率,这里推荐使用CLi
  这篇教程的主要源代码在ptb_word_lm.py与reader.py两个文件中。教程对应的源代码的github仓库地址。数据下载地址,该教程需要的数据在该下载的文件解压后的data子目录下。该目录的内容如下图所示:              首先介绍reader.py文件的内容:   reader.py文件由_reader_words、_builid_vocab、_file_to_wor
        通过观看视频,记下此次笔记,笔记内容来自lite深度解析视频。视频来源:https://www.bilibili.com/video/av24219725/        tensorflow lite 定位于设备端智能应用。我们在台式机上使用tensorflow开发出模型,训练出权重,然后使
转载 2024-04-21 07:13:47
59阅读
一. 总论说到Tensoflow serving的编译安装,真的是一把鼻涕一把泪。前前后后折腾了一个星期。在这期间参考了同行的做法,自己也在不断地摸索尝试。 遇到的困难:Tensoflow serving的版本和源码在不断更新,之前成功编译安装的版本在一段时间后,由于github上的Tensoflow serving的源码的更新,变得编译安装不成功。即使是执行官网提供的编译安装指令也无法成功编译安
摘要 2015年11月9日,Google发布深度学习框架TensorFlow并宣布开源,并迅速得到广泛关注,在图形分类、音频处理、推荐系统和自然语言处理等场景下都被大面积推广。TensorFlow系统更新快速,官方文档教程齐全,上手快速且简单易用,支持Python和C++接口。本文依据对Tensorflow(简称TF)白皮书[1]、TF Github[2]和TF官方教程[3]的理解,从系统和代码
TensorFlow 2.0源码编译步骤传统pip安装tensorflow限制修改bazel编译版本限制已知编译存在的问题配置configure编译选项Tips: 本文作者:Phillweston,未经允许禁止转载 传统pip安装tensorflow限制1.AVX指令集CPU使用老版本TensorFlow报错 对于不支持AVX指令集的CPU服务器,在python中使用 import tenso
转载 2023-11-26 23:34:36
70阅读
tensorflow/tensorflow/该目录下存放着tensorflow的核心代码contrib/该目录下存放有其他项目贡献者添加的相关贡献代码。由于tensorflow受关注程度较高,目前该目录正急剧膨胀。core/后台C++实现部分。包含了主要的 C++代码 和 runtimes 。该目录为tensorflow的C++源码的核心。common_runtime/tensorflow 普通的
# 学习实现 TensorFlow 架构源码 TensorFlow 是一个强大的机器学习框架,其架构源代码实现涉及多个文件和模块。对于刚入行的小白来说,理解如何实现和使用 TensorFlow 架构源码并不是一件容易的事。本文将为您详细讲解实现过程,并附上必要的代码示例和注释,帮助您顺利完成这项任务。 ## 实现流程 下面是学习实现 TensorFlow 架构源码的流程: | 步骤
原创 2024-10-01 11:21:10
64阅读
tensorflow 代码 介绍:(Introduction:)Learning to develop Deep Learning models is not an easy task to accomplish — especially for those who may not have serious experience in the field. When beginning to l
 决策森林是一系列机器学习算法,其质量和速度可与神经网络相竞争(它比神经网络更易于使用,功能也很强大),实际上与特定类型的数据配合使用时,它们比神经网络更出色,尤其是在处理表格数据时。随机森林是一种流行的决策森林模型。在这里,你可以看到一群树通过投票结果对一个例子进行分类。决策森林是由许多决策树构建的,它包括随机森林和梯度提升树等。这使得它们易于使用和理解,而且可以利用已经存在的大量可解
1 - Tensorflow源码目录结构基于2018年5月28日github的tensorflow源码,即1.8版本 第一层:tensorflow: 核心代码目录。 third_party:第三方库,包括:eigen3,fft2d,hadoop,mkl,probuf ,kafka,mpi,tensorRT,nccl,grpc等等。 tools:只有两个文件 bazel.rc 和 tf_en
论文下载地址 cosface,tensorflow源代码下载地址:cosface code。模型的训练通过train_multi_gpu.py实现,数据加载部分同之前介绍的方法类似,这里重点说一下网络结构和损失函数部分的代码,默认采用的网络结构是sphere_network,其主要实现在sphere_network.py的infer函数:def infer(input,embedding
转载 2024-08-11 20:20:55
171阅读
一 摘要      2015年11月9日,Google发布深度学习框架Tensorflow并宣布开源,迅速得到广泛的关注,在【图像分类】、【音频处理】、【推荐系统】和【自然语言处理】等场景下大面积被推广。Tensorflow系统更新的速度非常之快,官方文档的教程也比较齐全,上手快速,简单易用,支持Python和C++接口。本文依据对Tensorflow(简称
转载 2024-04-24 12:09:31
47阅读
TensorFlow C++ Session API reference documentationTensorFlow’s public C++ API includes only the API for executing graphs, as of version 0.5. To control the execution of a graph from C++: TensorFlow的C+
  • 1
  • 2
  • 3
  • 4
  • 5