雷锋网 AI 开发者按:近日,TensorFlow 强势推出能将模型规模压缩却几乎不影响精度的半精度浮点量化(float16 quantization)工具。小体积、高精度,还能够有效的改善 CPU 和硬件加速器延迟。TensorFlow 发出相应的文章对该工具做了简要的说明,雷锋网 AI 开发者将其整理编译如下。 Float16 Quantization我们非常高兴能够将训练后的 float1
模型压缩为了将tensorflow深度学习模型部署到移动/嵌入式设备上,我们应该致力于减少模型的内存占用,缩短推断时间,减少耗电。有几种方法可以实现这些要求,如量化、权重剪枝或将大模型提炼成小模型。在这个项目中,我使用了 TensorFlow 中的量化工具来进行模型压缩。目前我只使用权重量化来减小模型大小,因为根据 Mac 上的测试结果,完整 8 位转换没有提供额外的好处,比如缩短推断时间。(由于
原创 2023-05-31 10:50:58
113阅读
tensorflow 模型压缩
原创 2021-08-25 15:50:43
1273阅读
关于Tensorflow模型的保存、加载和预导入1. 什么是Tensorflow模型1.1 元图:1.2 检查点文件:2. 保存Tensorflow模型3. 导入预先训练的模型4. 使用已恢复的模型 参考ANKIT SACHAN:A quick complete tutorial to save and restore Tensorflow models1. 什么是Tensorflow模型Ten
一、模型的保存:tf.train.Saver类中的saveTensorFlow提供了一个一个API来保存和还原一个模型,即tf.train.Saver类。以下代码为保存TensorFlow计算图的方法:二、模型的读取:tf.train.Saver类中的restore注意:需要重新定义的变量大小和保存的模型变量大小需相同 通过以上方式保存和加载了TensorFlow计算图上定义的全部变量。
作者:TensorFlow 导读 一个Tensorflow训练后量化的工具,不用再单独训练一个低精度模型了,原来的全精度模型直接就可以转换。我们非常激动地添加训练后float16量化作为模型优化工具包的一部分。这是一套工具,包括:混合量化,全整数量化和剪枝。训练后的float16量化减少了TensorFlow Lite模型的尺寸(高达50%),同时牺牲了很少的精度。它量化模型常量(如权重和偏差
转载 2023-12-31 23:07:10
72阅读
# TensorFlow 2 Android 模型压缩指南 在现代的智能手机和边缘设备上,运行深度学习模型是一项挑战。我们需要确保模型不仅具备良好的准确率,还必须高效地占用内存和计算资源。这就是模型压缩的意义所在。本文将介绍如何使用 TensorFlow 2 在 Android 平台上对模型进行压缩,并示例代码。 ## 一、什么是模型压缩模型压缩是一个系统化的过程,以减小模型的大小和计算
原创 2024-10-12 05:57:43
38阅读
前段时间实践tensorflow目标检测模型再训练,过程见博文tf2目标检测-训练自己的模型总结目标检测模型再训练过程,有以下几点需注意:1 训练集和测试集训练图片每张只包含一个目标,因此可用小尺寸图片,且统一训练图片大小,有助于加快训练过程。测试图片则用大图片,包含多个需检测目标,同时包括应排除的目标,检验模型训练成果。2 模型处理窗口和输入图片resize问题每个再训练模型有处理窗口,例如ss
转载 2024-04-24 16:05:34
72阅读
文章目录Tensorflow Serving实战安装Tensorflow serving准备YOLOX模型部署YOLOX模型测试YOLOX模型模型多版本部署模型的热部署参考 Tensorflow Serving使用Tensorflow框架训练好模型后,想把模型部署到生产环境可以使用Tensorflow Serving进行部署。Tensorflow Serving具有以下作用:兼容Tensorf
本篇介绍函数包括: tf.conv2d tf.nn.relu tf.nn.max_pool tf.nn.droupout tf.nn.sigmoid_cross_entropy_with_logits tf.truncated_normal tf.constant tf.placeholder tf.nn.bias_add tf.reduce_mean tf.squared_d
转载 2024-02-22 00:49:25
37阅读
cifar10训练数据集下载链接:https://pan.baidu.com/s/1Qlp2G5xlECM6dyvUivWnFg 提取码:s32t代码解析前置配置引入tensorflow库,和其他辅助库文件。安装方式为pip3 install tensorflow numpy pickle。详细过程不在这里描述。 在这里,训练和测试数据集文件放在该脚本的父文件夹中,因此按照实际情况来对CIFAR_
  TensorFlow提供了一个非常简单的API来保存和还原一个神经网络模型。这个API就是tf.train.Saver类。以下代码给出了保存TesnsorFlow计算图的方法。import tensorflow as tf #声明两个变量并计算他们的和 v1 = tf.Variable(tf.constant(1.0, shape = [1]), name = "v1") v2 = tf.V
转载 2024-06-07 05:52:46
30阅读
tensorflow实现线性回归模型1.变量(1)变量的创建(2)变量的初始化(3)变量的作用域2.可视化学习Tensorboard(1)开启tensorboard(2)增加变量显示3.tensorflow实现线性回归实战(1)Tensorflow运算API(2)梯度下降API(3)实现线性回归4.模型加载和保存5.命令行参数 1.变量(1)变量的创建变量也是一种OP,是一种特殊的张量,能够进行
用过 TensorFlow 时间较长的同学可能都发现了 TensorFlow 支持多种模型格式,但这些格式都有什么区别?怎样互相转换?今天我们来一一探索。1. CheckPoint(*.ckpt)在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示:这种格式文件是由 tf.train.Saver() 对象调用 saver.save()
转载 2024-03-28 09:21:00
44阅读
文 /  李锡涵,Google Developers Expert在上一篇文章中,我们介绍了 tf.config 的使用方式,至此 TF2.0 中常用模块已经介绍完毕。 接下来我们将介绍 TensorFlow模型的部署与导出,本文介绍使用 SavedModel 完整导出模型。 使用 SavedModel 完整导出模型在部署模型时,我们的第一步往往
在开始正题之前,先介绍一下Tensorflow-hub, Tensorflow-hub 是 google 提供的机器学习模组打包函式库,帮开发者把TensorFlow的训练模型发布成模组,方便再次使用或是与社交共享。目前官网上已经发布了不少模组,可以直接下载使用。在之前博客【Tensorflow2.*教程之使用Tensorflow Hub 对IMDB电影评论数据集进行文本分类(2)】中也使用到Te
TensorFlow2的建模流程 1. 使用Tensorflow实现神经网络模型的一般流程 2. Titanic生存预测问题 2.1 数据准备 2.2 定义模型 2.3 训练模型 2.4 模型评估 2.5 使用模型 2.6 保存模型 参考资料 在机器学习和深度学习领域,通常使用TensorFlow来实现机器学习模型,尤其常用
转载 2024-03-19 00:09:13
187阅读
在所有的数据都处理完了之后,接下来就可以进行模型的训练了。在Github上FaceNet项目的介绍中有softmax和论文中提到的三元损失训练triplet两种方式,这边简单的介绍下softmax的训练方法。FaceNet已经将所有的方法都已经封装好,训练程序在src目录下的train_softmax.py文件中,在训练之前,我们首先要简单的修改下这份文件,让它适用于当前版本。找到260行,搜索i
NVIDIA DLI 深度学习入门培训 | 特设三场!! 4月28日/5月19日/5月26日 正文共7797个字,13张图,预计阅读时间18分钟。本篇文章有2个topic,简单的分类器和TensorFlow。首先,我们会编写函数生成三种类别的模拟数据。第一组数据是线性可分的,第二种是数据是月牙形数据咬合在一起,第三种是土星环形数据。每组数据有两个类型,我们将分别建立模型,对每组数
转载 2024-05-27 10:24:32
50阅读
模型保存和加载(一)TensorFlow模型格式有很多种,针对不同场景可以使用不同的格式。格式简介Checkpoint用于保存模型的权重,主要用于模型训练过程中参数的备份和模型训练热启动。GraphDef用于保存模型的Graph,不包含模型权重,加上checkpoint后就有模型上线的全部信息。SavedModel使用saved_model接口导出的模型文件,包含模型Graph和权限可直接用于上
转载 2024-05-31 20:10:39
80阅读
  • 1
  • 2
  • 3
  • 4
  • 5