目录概要源码分析Python 梯度API gradients核心函数_GradientsHelper反向传播梯度计算过程示意概要深度学习框架比如Tensorflow能够对深度学习领域起到巨大推动作用的一个重要Feature就是自动反向传播更新梯度,文章 链接 对几种不同类型的微分做了很详细的图文说明,值得一看。本文基于Google 官Tensorflow_r1.15 版本对求解梯度(微分
转载
2024-07-08 11:51:40
19阅读
#include <iostream>
#include <string>
#include <cxcore.h>
#include <cv.h>
#include <highgui.h>
#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
#inc
转载
2024-02-23 19:43:13
60阅读
以下为萌新初学神经网络的学习笔记。神经网络tensorflow简介:**1、**人的神经网络大致可以分为三部分:传入神经——>神经中枢——>传出神经。**2、**同样的,对于机器的神经网络而言,也存在这样的三个部分:Input layer——>Hidden layer——>Output layer一、Hidden layer(该图片为网图)隐含层就相当于人的神经中的神经中枢
转载
2024-04-07 21:27:39
32阅读
花了一些时间看了一下TensorFlow 核心(core)部分的源代码,主要是C++的部分。除了C++ 11的代码实在有些烧脑以外,感叹一下TensorFlow的架构设计得真不错:首先TensorFlow core要解决的问题全部集中在了图上:每个节点(node)就是一个操作(op),比如说矩阵乘法,每条边(edge)就是操作的输入也就是数据或者依赖关系(称为control edge)。每个op对
转载
2024-04-09 01:25:24
10阅读
TensorFlow学习笔记1 TensorFlow 简介2 张量及其操作2.1 张量的定义2.2 创建张量2.3 转换成 numpy2.4 常用函数3 tf.keras介绍3.1 常用模块3.2 常用方法3.3 模型入门案例 1 TensorFlow 简介深度学习框架 TensorFlow 一经发布,就受到了广泛的关注,并在计算机视觉、音频处理、推荐系统和自然语言处理等场景下都被大面积推广使用
前言前面用CNN卷积神经网络对猫狗数据集进行了分类,可以看出一个层数比较低的CNN在做分类的时候效果达不到特别好,前面的CNN只能达到75%-80%的正确率,但是那是由于我们的CNN结构比较简单,所以要想分类效果更好,我们需要用更加复杂的模型,这里我就采用更加复杂的深度残差神经网络(ResNet)对猫狗数据集进行训练分类。我们可以直接采用预训练模型ResNet50进行模型训练,如果不知道预训练是什
转载
2024-02-19 17:12:44
75阅读
文章目录os.environ 打印输出信息with open() as 读取文件for name,value in xxx.items(): 遍历(键,值)namedtuple 转换类型tf.placeholder 设定占位符tf.read_file 读取文件tf.image.resize 改变图片大小,这一部分好像坑很多,使用小心tf.image.decode_jpeg 图像解码tf.imag
转载
2024-05-09 07:55:50
55阅读
在Windows上调试TensorFlow 2.0 中文手写字识别(汉字OCR)一、环境的搭建 Windows+1080Ti+Cuda10.1 Tsorflow2.0.0 Numpy1.16.4 注意:这里tensorflow和numpy的版本一定不能错,要不然后面会有意想不到的bug!!二、数据的准备 数据全部来自于CASIA的开源中文手写字数据集,该数据集分为两部分: CASIA-HWDB:离
转载
2024-03-23 13:03:32
470阅读
背景关于 tensorflowTensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由G
转载
2024-04-30 01:56:10
73阅读
Tensorflow是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图,可以把计算图看做是一种有向图,Tensorflow中的每一个节点都是计算图上的一个Tensor张量,而节点之间的边描述了计算之间的依赖关系(定义时)和数学操作(运算时)。 Tensorflow的关键优势并不在于提供多少的深度神经网络模型,函数或方法,
转载
2023-12-13 05:07:23
56阅读
TensorFlow 训练 Mask R-CNN 模型 公输睚信 关注 0.9 2018.08.25 20:50* 字数 2403 阅读 14401评论 104喜欢 34 前面的文章 TensorFlow 训练自己的目标检测器 
转载
2024-09-18 12:01:49
46阅读
这一节我们提及了三个内容:变量共享、线程和队列和数据读取,这些都是TensorFlow官方指导中的内容。会在程序中经常遇到所以放在一起进行叙述。前面都是再利用已有的数据进行tensorflow的学习,这一节我们要学习怎么从文件中读取我们需要的各类数据。1、变量共享 前面已经说过如何进行变量的生成和初始化内容,也用到了命名空间的概念,这里说一下什么是变量共享。当我们有一个非常庞大的模型的时候免
Tensorflow的拓展之 TensorFlow Hub 模型复用
目录 TF Hub 网站 TF Hub 安装 TF Hub 模型使用样例 TF Hub 模型 retrain 样例 在软件开发中,我们经常复用开源软件或者库,避免了相同功能的代码重复开发,减少了大量的重复劳动,也有效缩短了软件开发周期。代码复用,对软件产业的蓬勃发展,有着
tensorflow自然语言处理(自动生成古诗)在我上一篇博客当中,已经写了CNN验证码识别,由此可以看出神经网络的强大之处,所以这篇博客主要是来讲解一下RNN中的LSTM网络处理自然语言,输入一个字就自动生成一篇优美的古诗。RNN主要逻辑就是每个样本之间有比较强烈的关联性,这种关联性比较适合自然语言的处理,因为我们说的话都是有一定的关联性。这里我们不过多的讲解RNN的理论基础,因为上百度上面搜索
Skeleton Aware Multi-modal Sign Language Recognition解读摘要1. 简介2. Related Work2.1 Sign Language Recognition (SLR)2.2 Skeleton Based Action Recognition2.3 Multi-modal Approach3. 方法3.1 SL-GCN3.1.1 Graph的
转载
2024-07-10 05:50:39
176阅读
代码和思路分享来自Github:https://github.com/selous123/yolov3-pytorch-custom 调ultralytics/yolov3这个炉子,目前b榜在0.74左右,一阶段准确率很高的网络了。前排大佬可能大部分都是基于MMdet的二阶段网络,Faster-RCNN,Cascade-RCNN等。比赛数据集下载地址:链接: https://pan.baidu.c
现在,有一家公司来拯救脸盲了,不是你熟悉的硅谷/后厂村大公司,而是一家动图表情包网站:GIPHY。GIPHY开源了一个表情包识别器,可以分清楚超过2300个名人,而且它识别的还是动图,准确率超过98%。这效果,可以的良心的是,GIPHY不仅把这个工具开源了,而且还直接用在了自己的网站上,不是Demo,已经是成品。那我们来测验一下这个功能好不好用~第一张,泰勒·斯威夫特,传上去试试效果认出来了,匹配
TensorFlow在本系列文章中,我们选用TensorFlow作为我们进行机器学习的基础框架,大家可以到 TensorFlow官网 查看相关资料和文档。 但是正如在上一篇文章中所说的,我们不需要你具有任何机器学习的基础,所以我们也不会在这里讲解 TensorFlow 的细节, 你只要记住,TensorFlow是一个深度学习的框架,就好像我们开发web应用时使用的Rails 一样。心急的同学可能会
Tensorflow在更新1.2版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(看这里),大大降低了吾等调包侠的开发难度,无论是fine-tuning还是该网络结构都方便了不少。这里讲的的是物体检测(object detection)API,这个库的说明文档很详细,可以的话直接看原文即可。这个物体检测API提供了5种网络结构的预训练的weights,全部是用COCO数据集进行训练
深度学习之tensorflow入门实例线性回归首先需要生成一组原始数据import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
train_x=np.linspace(-1,1,100)
train_y=2*train_x+np.random.randn(*train_x.shape)*0.3
plt.pl