训练了很久的Tf模型,终于要到生产环境中去考研一番了。今天花费了一些时间去研究tf的模型如何在生产环境中去使用。大概整理了这些方法。继续使用分步骤保存了的ckpt文件这个貌似脱离不了tensorflow框架,而且生成的ckpt文件比较大,发布到生产环境的时候,还得把python的算法文件一起搞上去,如何和其他程序交互,可能还得自己去写服务。估计很少有人这么做,貌似性能也很一般。使用tensorfl
前段时间实践tensorflow目标检测模型再训练,过程见博文tf2目标检测-训练自己的模型总结目标检测模型再训练过程,有以下几点需注意:1 训练集和测试集训练图片每张只包含一个目标,因此可用小尺寸图片,且统一训练图片大小,有助于加快训练过程。测试图片则用大图片,包含多个需检测目标,同时包括应排除的目标,检验模型训练成果。2 模型处理窗口和输入图片resize问题每个再训练模型有处理窗口,例如ss
转载
2024-04-24 16:05:34
72阅读
TensorFlow模型转换与优化:流程解析
在深度学习模型部署的实际场景中,我们常常需要对模型进行跨框架的转换与优化。本文将详细介绍两种将TensorFlow模型转换为ONNX格式、进行量化操作并最终转回TensorFlow的方法。通过这些方法,我们可以在保证模型性能的同时,显著减少模型的体积和内存占用,提高模型的运行效率。
一、路径1:TensorFlow→ONNX→量化→重命名→Tensor
TensorFlow提供了一个非常简单的API来保存和还原一个神经网络模型。这个API就是tf.train.Saver类。以下代码给出了保存TesnsorFlow计算图的方法。import tensorflow as tf
#声明两个变量并计算他们的和
v1 = tf.Variable(tf.constant(1.0, shape = [1]), name = "v1")
v2 = tf.V
转载
2024-06-07 05:52:46
30阅读
tensorflow实现线性回归模型1.变量(1)变量的创建(2)变量的初始化(3)变量的作用域2.可视化学习Tensorboard(1)开启tensorboard(2)增加变量显示3.tensorflow实现线性回归实战(1)Tensorflow运算API(2)梯度下降API(3)实现线性回归4.模型加载和保存5.命令行参数 1.变量(1)变量的创建变量也是一种OP,是一种特殊的张量,能够进行
转载
2024-04-21 13:36:46
78阅读
文章目录Tensorflow Serving实战安装Tensorflow serving准备YOLOX模型部署YOLOX模型测试YOLOX模型多模型多版本部署模型的热部署参考 Tensorflow Serving使用Tensorflow框架训练好模型后,想把模型部署到生产环境可以使用Tensorflow Serving进行部署。Tensorflow Serving具有以下作用:兼容Tensorf
转载
2024-05-05 18:54:11
162阅读
本篇介绍函数包括:
tf.conv2d
tf.nn.relu
tf.nn.max_pool
tf.nn.droupout
tf.nn.sigmoid_cross_entropy_with_logits
tf.truncated_normal
tf.constant
tf.placeholder
tf.nn.bias_add
tf.reduce_mean
tf.squared_d
转载
2024-02-22 00:49:25
37阅读
cifar10训练数据集下载链接:https://pan.baidu.com/s/1Qlp2G5xlECM6dyvUivWnFg 提取码:s32t代码解析前置配置引入tensorflow库,和其他辅助库文件。安装方式为pip3 install tensorflow numpy pickle。详细过程不在这里描述。 在这里,训练和测试数据集文件放在该脚本的父文件夹中,因此按照实际情况来对CIFAR_
转载
2024-05-13 11:28:25
49阅读
用过 TensorFlow 时间较长的同学可能都发现了 TensorFlow 支持多种模型格式,但这些格式都有什么区别?怎样互相转换?今天我们来一一探索。1. CheckPoint(*.ckpt)在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示:这种格式文件是由 tf.train.Saver() 对象调用 saver.save()
转载
2024-03-28 09:21:00
44阅读
在开始正题之前,先介绍一下Tensorflow-hub, Tensorflow-hub 是 google 提供的机器学习模组打包函式库,帮开发者把TensorFlow的训练模型发布成模组,方便再次使用或是与社交共享。目前官网上已经发布了不少模组,可以直接下载使用。在之前博客【Tensorflow2.*教程之使用Tensorflow Hub 对IMDB电影评论数据集进行文本分类(2)】中也使用到Te
转载
2024-05-13 11:15:40
203阅读
TensorFlow2的建模流程
1. 使用Tensorflow实现神经网络模型的一般流程
2. Titanic生存预测问题
2.1 数据准备
2.2 定义模型
2.3 训练模型
2.4 模型评估
2.5 使用模型
2.6 保存模型
参考资料
在机器学习和深度学习领域,通常使用TensorFlow来实现机器学习模型,尤其常用
转载
2024-03-19 00:09:13
187阅读
文 / 李锡涵,Google Developers Expert在上一篇文章中,我们介绍了 tf.config 的使用方式,至此 TF2.0 中常用模块已经介绍完毕。 接下来我们将介绍 TensorFlow 中模型的部署与导出,本文介绍使用 SavedModel 完整导出模型。
使用 SavedModel 完整导出模型在部署模型时,我们的第一步往往
转载
2024-05-13 14:57:22
46阅读
在所有的数据都处理完了之后,接下来就可以进行模型的训练了。在Github上FaceNet项目的介绍中有softmax和论文中提到的三元损失训练triplet两种方式,这边简单的介绍下softmax的训练方法。FaceNet已经将所有的方法都已经封装好,训练程序在src目录下的train_softmax.py文件中,在训练之前,我们首先要简单的修改下这份文件,让它适用于当前版本。找到260行,搜索i
转载
2024-04-12 19:52:06
33阅读
NVIDIA DLI 深度学习入门培训 | 特设三场!! 4月28日/5月19日/5月26日 正文共7797个字,13张图,预计阅读时间18分钟。本篇文章有2个topic,简单的分类器和TensorFlow。首先,我们会编写函数生成三种类别的模拟数据。第一组数据是线性可分的,第二种是数据是月牙形数据咬合在一起,第三种是土星环形数据。每组数据有两个类型,我们将分别建立模型,对每组数
转载
2024-05-27 10:24:32
50阅读
tensorflow模型的格式通常支持多种,主要有CheckPoint(*.ckpt)、GraphDef(*.pb)、SavedModel。 1. CheckPoint(*.ckpt)在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示: 这种格式文件是由 tf.train.Saver() 对象调用 saver.s
转载
2024-03-05 11:03:08
64阅读
以下代码在Python3.6和TensorFlow>=1.10运行通过。1.tensorflow模型有两个文件组成:(1)meta graph: 这是一个协议缓冲区, 它保存了完整的tensorflow图形,即所有变量、操作、集合等。该文件以.meta作为扩展名。 (2)checkpoint file: 这是一个二进制文件,它包含了所有的权重、偏置、梯度和其他所有变量的值。这个文件有一个扩展
转载
2024-04-06 22:40:19
42阅读
目录0、准备1、数据处理---图片格式转成TFRecord格式2、模型训练3、验证训练后的效果说明:此处可以模仿源码中inception v3的分类案例slim预训练好的包含inception v1,inception v2,inception v3,inception v4,mobilenet v1,mobilenet v2,NasNet,pNasNet等。可以根据需要进行选择。0、准备0.1准
转载
2024-03-04 12:35:30
31阅读
是一个通过计算图的形式来表述计算的编程系统。其中的Tnesor,代表它的数据结构,而Flow代表它的计算模型。TensorFlow中的每一个计算都是计算图上的一个节点,而节点之间的线描述了计算之间的依赖关系。 在TensorFlow程序中,系统会自动维护一个默认的计算图,通过tf.get_default_gragh函数可以获取当前默认的计算图。除了默认的计算图,TensorFlow也支持通过tf
转载
2024-02-29 16:23:52
32阅读
本篇文章主要介绍TensorFlow的基本概念,包含TensorFlow的计算模型、数据模型和运行模型。◆ ◆ ◆ ◆ ◆TensorFlow计算模型——计算图 计算图的概念TensorFlow的名字中已经说明了最重要的两个概念——Tensor(张量)和Flow(流)。TensorFlow是通过一个计算图的形式来表达计算的编程系统。TensorFlow
转载
2024-03-29 11:24:30
57阅读
一些上下文我的目标是让注意力OCR学习在哪里查找和阅读扫描文档中的特定信息。它应该找到一个10位数的数字(在大多数情况下)前面有一个描述性标签。文件的布局和类型各不相同,因此我得出结论,如果不使用注意机制,任务是无法解决的,因为位置可变。。。在我的第一个问题是:我是否正确地解释了模型的功能?它真的能解决我的问题吗?(一)目前的进展我试着在自己的数据集上运行了这项培训,其中有大约200k张736x7
转载
2024-04-28 15:23:14
45阅读