其实内容有一定难度,不适合入门资料,同样的内容可以讲的很简单,需要一定的知识储备。使用 TensorFlow 的基本步骤学习目标:学习基本的 TensorFlow 概念在 TensorFlow 中使用 LinearRegressor 类并基于单个输入特征预测各城市街区的房屋价值中位数使用均方根误差 (RMSE) 评估模型预测的准确率通过调整模型的超参数提高模型准确率设置在此第一个单元格中,我们将加
TensorFlow入门教程之0: BigPicture&极速入门TensorFlow入门教程之1: 基本概念以及理解 TensorFlow入门教程之2: 安装和使用 TensorFlow入门教程之3: CNN卷积神经网络的基本定义理解TensorFlow入门教程之4: 实现一个自创的CNN卷积神经网络 TensorFlow入门教程之5: TensorBoard面板可视化管理 Tenso
原来链接 -> link声明:参考自Python TensorFlow Tutorial – Build a Neural Network,本文简化了文字部分 文中有
原创 2022-03-18 14:37:41
267阅读
Tensorflow教程笔记基础TensorFlow 基础TensorFlow 模型建立与训练基础示例:多层感知机(MLP)卷积神经网络(CNN)循环神经网络(RNN)深度强化学习(DRL)Keras Pipeline自定义层、损失函数和评估指标常用模块 tf.train.Checkpoint :变量的保存与恢复常用模块 TensorBoard:训练过程可视化常用模块 tf.data :数据集的构建与预处理常用模块 TFRecord :TensorFlow 数据集存储格式常用
原创 2021-07-09 14:24:09
462阅读
Tensorflow教程笔记基础TensorFlow 基础TensorFlow 模型建立与训练基础示例:多层感知机(MLP)卷积神经网络(CNN)循环神经网络(RNN)深度强化学习(DRL)Keras Pipeline自定义层、损失函数和评估指标常用模块 tf.train.Checkpoint :
原创 2021-07-16 17:34:55
1266阅读
原来链接 -> link声明:参考自Python TensorFlow Tutorial – Build a Neural Network,本文简化了文字部分 文中有很多到官方文档的链接,毕竟有些官方文档是中文的,而且写的很好。Tensorflow入门资源:付费tensorflow教程Tensorflow graphsTensorflow是基于graph的并行计算模型...
原创 2021-05-29 07:40:53
474阅读
Tensorflow教程笔记TensorFlow 基础目录Tensorflow教程笔记计算图纸Tensor 张量意义自动求导机制基础示例:线性回归NumPy 下的线性回归TensorFlow 下的线性回归计算图纸Tensorflow 首先要定义神经网络的结构, 然后再把数据放入结构当中去运算和 training.因为TensorFlow是采用 数据流图(data flow graphs) 来计算, 所以首先我们得创建一个数据流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在
原创 2021-07-09 14:52:04
492阅读
开篇作为用tensorflow1.4一值没更新的人来讲,本来决定换pytorch,但是看了下tensorflow2的一些简单操作后,决定再次投入到tensorflow的怀抱。基础操作首先看一些基础操作import tensorflow as tf import numpy as np tf.__version__ #'2.2.0' x = [[1.]] m = tf.matmul(x, x) p
TensorFlow DeepLab教程初稿-tensorflow gpu安装教程 Summary: DeepLab需要1.10以上版本。 本日志详细记录在两台不同笔记本电脑安装/更新 TensorFlow-GPU的具体过程 这是本人第3次,4次安装tf,这两次是gpu版。 第一次是安装cpu版,第二次是在python2.7 arcpy环境下安装32位 tf,但不能运行。第三次安装成功,但电脑
转载 2019-07-24 19:41:00
457阅读
2评论
tensorflow是谷歌开源的人工智能库,有最完善的生态支持。是进行人工智能领域开发和科研的必备工具。本文在windows10下,借助anacondaAnaconda安装和使用,安装tensorflow2.0。首先打开anaconda,执行conda create --name tf2.0 python=3.7建立一个名为tf2.0的虚拟环境。细节不说了,参考我之前的文章,就是一直选yes,安装
原创 2021-03-01 22:12:29
567阅读
Kubeflow是Kubernetes的机器学习工具包。它的目的是将流行的工具和库归为一类,以使用户能够:生成具有持久容量的Jupyter notebooks,用于进行探索性工作。在最初对TensorFlow 生态系统的支持下,构建,部署和管理机器学习pipelines,但此后扩展到包括最近在研究界越来越受欢迎的其他库(例如PyTorch)。调整hyperparameters,&nbsp
转载 5月前
33阅读
TensorFlow学习笔记(二):TensorFlow入门 TensorFlow学习笔记二TensorFlow入门TensorTensorFlow教程importing TensorFlow计算图tfTrain API完整代码tfcontriblearnBasic usage自定义模型 在安装完TensorFlow后,如果要将TensorFlow用好,我们需要有如下的知识:如何使用Python编
转载 2024-10-16 07:48:01
35阅读
TensorFlow R发现它很有用...
翻译 2023-07-14 18:31:53
69阅读
1.import 2.train test指定训练集测试集 3.在sequential()中搭建网络结构,逐层描述每层网络(相当于走了一遍前向传播) 4.在compile()中配置训练方法,告知训练器选择哪种优化器,选择哪个损失函数,以及选择哪种评测指标 5.在fit()中执行训练过程,告知训练集和测试集的输入特征和标签,告知每个batch是多少,告知要迭代多少次数据集 6.用summar()打印
目录结构:深度学习简介Tensorflow系统介绍Hello TensorFlowCNN 看懂 世界RNN 能说会道CNN+LSTM看图说话损失函数与优化算法这本书很适合有一定机器学习基础的人阅读, 书中首先第一章会介绍深度学习是什么、发展趋势如何,第二章介绍了Tensorflow是如何通过 “图” 来简单方便地构建一个神经网络,第三章简单介绍了安装以及相关的python库,然后使用kaggle
 TensorFlow 2.0已在十一发布,香不香?好用不好用?现在,这里有一份全中文教学的快速上手指南,基于Keras和Eager Execution(动态图)模式,北大学霸出品,获得TensorFlow官方认可。其名为,简单粗暴TensorFlow 2.0。话不多说,一起来看看吧。简洁高效的指导手册TensorFlow 2.0,摈弃了TensorFlow 1.x的诸多弊病,进一步整合
教程对应的tensorflow版本为:tensorflow 1版本简介  深度学习的框架有很多:TensorFlow、Caffe、Theano、Torch...TensorFlow作为谷歌重要的开源项目,有非常火热的开源的开源社区推动着开源项目的发展,它能让项目有旺盛的生命力并在生命周期中不断涌现新的功能并以较快的迭代来更新Bug修复。Keras是在TensorFlow基础上构建的高层API,K
转载 2024-05-27 16:33:52
80阅读
Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。有时候我们在使用keras设计好模型后,需要在其他平台进行运行,这时候我们就需要将keras h5 model转换为TensorFlow pb model,因为keras只是一个Python的高级库,而TensorF
TensorFlow lite 开发手册(6)——TensorFlow Lite模型使用通用流程(以CPM算法为例)(一)流程示意(二)主要函数说明(三) 操作流程3.1 CPM算法介绍3.2 加载模型3.3 加载所有tensor3.4 获取输入输出信息3.5 构建输入3.6 调用模型3.7 取出输出结果3.8 输出结果后处理3.8 标记结果3.9 完整程序 (一)流程示意 Creat
Tensorflow教程笔记基础TensorFlow 基础TensorFlow 模型建立与训练基础示例:多层感知机(MLP)卷积神经网络(CNN)循环神经网络(RNN)深度强化学习(DRL)Keras Pipeline自定义层、损失函数和评估指标常用模块 tf.train.Checkpoint :变量的保存与恢复常用模块 TensorBoard:训练过程可视化常用模块 tf.data :数据集的构建与预处理常用模块 TFRecord :TensorFlow 数据集存储格式常用
原创 2021-07-09 14:24:11
886阅读
  • 1
  • 2
  • 3
  • 4
  • 5