# 学习实现 TensorFlow 架构源码
TensorFlow 是一个强大的机器学习框架,其架构源代码实现涉及多个文件和模块。对于刚入行的小白来说,理解如何实现和使用 TensorFlow 架构源码并不是一件容易的事。本文将为您详细讲解实现过程,并附上必要的代码示例和注释,帮助您顺利完成这项任务。
## 实现流程
下面是学习实现 TensorFlow 架构源码的流程:
| 步骤
原创
2024-10-01 11:21:10
64阅读
3 系统架构系统整体组成:Tensorflow的系统结构以C API为界,将整个系统分为前端和后端两个子系统:前端构造计算图后端执行计算图,可再细分为: 运行时:提供本地模式和分布式模式计算层:由kernal函数组成通信层:基于gRPC实现组件间的数据交换,并能够在支持IB网络的节点间实现RDMA通信设备层:计算设备是OP执行的主要载体,TensorFlow支持多种异构的计算设
转载
2023-09-18 10:03:36
228阅读
点赞
1. tensorflow工作流程如官网所示:根据整体架构或者代码功能可以分为:图1.1 tensorflow架构如图所示,一层C的api接口将底层的核运行时部分与顶层的多语言接口分离开。而根据整个的工作流程,又可以分为:图1.2 不同系统组件之间的交互而图1.2也是tensorflow整个工作的流程,其中主要分为四个部分:1.1. 客户端client将整个计算过程转义成一个数据流graph通过s
转载
2023-07-06 12:43:05
94阅读
TensorFlow 是一个开源的机器学习框架,它具备灵活的架构以及丰富的功能,适合于各种规模的机器学习任务。作为一名 IT 技术专家,我想深入探讨 TensorFlow 的源码架构,以便更好地理解其内部工作原理及开发潜力。
为了系统地记录和分析这个过程,我将根据背景描述、技术原理、架构解析、源码分析、应用场景及总结与展望这几个方面进行详细讲解。
### 背景描述
TensorFlow 源码架
tensorflow使用了自动化构建工具bazel、脚本语言调用c或cpp的包裹工具swig、使用EIGEN作为矩阵处理工具、Nvidia-cuBLAS GPU加速计算库、结构化数据存储格式protobufSwig 1. Simplified Wrapper and Interface Generator (SWIG) ,基本思想就是向脚本语言接口公
步骤一:建议先通读TensorFlow Servering官网,对整体概念有大体的认识步骤二:去TF github下载源码。注意,同时下载tensoflow源码,servering会依赖其中的一部分步骤三:开始源码解析目录介绍:api对外服务接口部分batching不知道在干啥configServer的配置参数core模型管理核心部分。包括模型发现,加载,本机资源管理model_servers模型
转载
2023-12-25 10:08:06
240阅读
这篇教程的主要源代码在ptb_word_lm.py与reader.py两个文件中。教程对应的源代码的github仓库地址。数据下载地址,该教程需要的数据在该下载的文件解压后的data子目录下。该目录的内容如下图所示: 首先介绍reader.py文件的内容: reader.py文件由_reader_words、_builid_vocab、_file_to_wor
转载
2024-04-18 06:28:12
105阅读
通过观看视频,记下此次笔记,笔记内容来自lite深度解析视频。视频来源:https://www.bilibili.com/video/av24219725/ tensorflow lite 定位于设备端智能应用。我们在台式机上使用tensorflow开发出模型,训练出权重,然后使
转载
2024-04-21 07:13:47
59阅读
一. 总论说到Tensoflow serving的编译安装,真的是一把鼻涕一把泪。前前后后折腾了一个星期。在这期间参考了同行的做法,自己也在不断地摸索尝试。 遇到的困难:Tensoflow serving的版本和源码在不断更新,之前成功编译安装的版本在一段时间后,由于github上的Tensoflow serving的源码的更新,变得编译安装不成功。即使是执行官网提供的编译安装指令也无法成功编译安
摘要 2015年11月9日,Google发布深度学习框架TensorFlow并宣布开源,并迅速得到广泛关注,在图形分类、音频处理、推荐系统和自然语言处理等场景下都被大面积推广。TensorFlow系统更新快速,官方文档教程齐全,上手快速且简单易用,支持Python和C++接口。本文依据对Tensorflow(简称TF)白皮书[1]、TF Github[2]和TF官方教程[3]的理解,从系统和代码
转载
2024-05-07 21:04:54
51阅读
TensorFlow 2.0源码编译步骤传统pip安装tensorflow限制修改bazel编译版本限制已知编译存在的问题配置configure编译选项Tips: 本文作者:Phillweston,未经允许禁止转载 传统pip安装tensorflow限制1.AVX指令集CPU使用老版本TensorFlow报错 对于不支持AVX指令集的CPU服务器,在python中使用 import tenso
转载
2023-11-26 23:34:36
70阅读
读TensorFlow 源码笔记(2): tensorflow的控制流算子(control_flow_op)在阅读TensorFlow源码时,遇到了很多复杂又晦涩的概念,今儿整理以下内容,分享给大家:介绍专门为处理控制流而添加的五个TensorFlow原语运算符,演示如何将高级控制流结构编译为包含这五个原语的数据流图解释TensorFlow运行时如何执行这些数据流图,包括在一组混合设备(如CPU、
转载
2024-08-11 10:54:57
74阅读
1 - Tensorflow源码目录结构基于2018年5月28日github的tensorflow源码,即1.8版本第一层:tensorflow: 核心代码目录。
third_party:第三方库,包括:eigen3,fft2d,hadoop,mkl,probuf ,kafka,mpi,tensorRT,nccl,grpc等等。
tools:只有两个文件 bazel.rc 和 tf_env_col
转载
2024-03-13 11:38:52
129阅读
tensorflow/tensorflow/该目录下存放着tensorflow的核心代码contrib/该目录下存放有其他项目贡献者添加的相关贡献代码。由于tensorflow受关注程度较高,目前该目录正急剧膨胀。core/后台C++实现部分。包含了主要的 C++代码 和 runtimes 。该目录为tensorflow的C++源码的核心。common_runtime/tensorflow 普通的
转载
2024-05-29 20:21:16
84阅读
前言: 一般来说,如果安装tensorflow主要目的是为了调试些小程序的话,只要下载相应的包,然后,直接使用pip install tensorflow即可。 但有时我们需要将Tensorflow的功能移植到其它平台,这时就无法直接安装了。需要我们下载相应的Tensorflow源码,自已动手编译了。正文:
转载
2023-09-27 08:17:06
82阅读
TensorFlow是什么?TensorFlow基于数据流图,用于大规模分布式数值计算的开源框架。节点表示某种抽象的计算,边表示节点之间相互联系的张量。计算图实例TensorFlow支持各种异构的平台,支持多CPU/GPU,服务器,移动设备,具有良好的跨平台的特性;TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性;此外,TensorFlow架构具有良好的可扩展性,对OP的扩展支
转载
2023-12-20 17:14:33
60阅读
tensorflow 代码 介绍:(Introduction:)Learning to develop Deep Learning models is not an easy task to accomplish — especially for those who may not have serious experience in the field. When beginning to l
决策森林是一系列机器学习算法,其质量和速度可与神经网络相竞争(它比神经网络更易于使用,功能也很强大),实际上与特定类型的数据配合使用时,它们比神经网络更出色,尤其是在处理表格数据时。随机森林是一种流行的决策森林模型。在这里,你可以看到一群树通过投票结果对一个例子进行分类。决策森林是由许多决策树构建的,它包括随机森林和梯度提升树等。这使得它们易于使用和理解,而且可以利用已经存在的大量可解
照猫画虎地使用了一段时间TensorFlow,开源项目也调了好些个,但是在深入到具体细节的时候,发现完全不知其所以然。所以决定抽点时间把基础知识补一补,省得以后继续抓瞎。众所周知,TensorFlow是由Google开源的机器学习算法库,自2015年发布以来,在全球范围内受到了极大的关注,用户量一直居于各大机器学习框架之首。TensorFlow支持PC、服务器、移动端、嵌入式等各种平台,开放了Py
转载
2023-08-30 13:01:53
72阅读
TensorFlow是什么?TensorFlow基于数据流图,用于大规模分布式数值计算的开源框架。节点表示某种抽象的计算,边表示节点之间相互联系的张量。TensorFlow支持各种异构的平台,支持多CPU/GPU,服务器,移动设备,具有良好的跨平台的特性;TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性;此外,TensorFlow架构具有良好的可扩展性,对OP的扩展支持,Ker
转载
2023-07-10 22:53:16
135阅读