经过一系列测试,tensorlfow-serving确实要比直接利用flask部署快非常,虽然网上也有很多有关怎么把自己的训练好的模型部署到tensorlfow-serving上。但是为了有一个自己完整的记录,还是写了这样的经验供大家参考。(1)训练自己的tensorflow模型或者直接使用预训练的bert模型,这里我采用的tensorflow1.15.0版本。最终生成的是如下结构的模型文件:如
转载 2024-04-30 14:24:25
91阅读
文章目录写在前面简单的concatTFN融合策略LWF融合策略 论文全称: 《Tensor Fusion Network for Multimodal Sentiment Analysis》 《Efficient Low-rank Multimodal Fusion with Modality-Specific Factors》写在前面最近在做一个分类的比赛,想要用上数据中的模态信息(主要是文
转载 2023-11-23 16:40:23
622阅读
图像读取 tf.gfile.FastGFile(“/path/to/picture”, ‘r’).read()图像格式的编码解码 :图像不直接记录图像上的不同位置,不同颜色的亮度。而是记录压缩编码之后的结果。所以要还原成三维矩阵,需要解码。以下为对jpeg格式图像编码/解码函数: tf.image.decode_jpeg() #解码tf.image.encode_jpeg() #编码print (
代码:https://github.com/zehuichen123/AutoAlignV21摘要点云和RGB图像是自动驾驶中常用的两种感知数据来源,前者可以提供精确的目标定位,后者包括丰富的语义信息。针对3D目标检测中这两种模态的融合,之前提出的AutoAlign方法提出了一种可学习的范式,但由于全局注意力机制,计算开销很大。为了解决这个问题,本文提出了跨域的DeformCAFA模块,它更加关注
还是道歉啊 有重复勿怪自己学习省事哦最近想到公司做的雷视融合,而且看了好多最近的各种展会 写一下融合相关的模态感知融合是自动驾驶的基础任务。但是,由于原始数据噪声大、信息利用率低以及模态传感器未对齐等这些原因,要想实现一个好的性能也并非易事。那么在这篇调研报告里面,总结了篇论文中Lidar和camera的模态融合的一些概念方法。为啥需要模态融合在复杂的驾驶环境中,单一的传感器信息不足以有
  0 前言 本篇文章主要想对目前处于探索阶段的 3D目标检测中模态融合的方法 做一个简单的综述,主要内容为对目前几篇研究工作的总结和对这个研究方面的一些思考。 在前面的一些文章中,笔者已经介绍到了模态融合的含义是将多种传感器数据融合。在3D目标检测中,目前大都是将lidar和image信息做融合。在上一篇文章中,笔者介绍到了目前主要的几种融合方法,即e
01 引言随着传感器技术和互联网的迅速发展,各种不同模态的大数据正在以前所未有的发展速度迅速涌现。对于一个待描述事物(目标、场景等),通过不同的方法或视角收集到的耦合的数据样本就是模态数据。通常把收集这些数据的每一个方法或视角称之为一个模态。狭义的模态信息通常关注感知特性不同的模态(如图像-文本、视频-语音、视觉-触觉等),而广义的模态融合则通常还包括同一模态信息中的特征融合,以及多个同类
CMU模态数据1 下载数据 在数据及中包含了三个部分:highlevel,raw以及labels。highlevel是已经经过处理的特征(利用facet以及openSMILE等工具进行抽取),raw是原始特征。由于目前SDK并不能够自动检测是否已经下载过数据集,如果当你有下载了然后要再从晚上downloading的话,会报错,因此需要加入一个try…except。代码片段如下// An high
https://github.com/GoogleCloudPlatform/tf-estimator-tutorials/tree/master/Experimental/distribution
原创 2022-07-19 11:56:37
319阅读
     作者:郑秋硕,漆桂林,王萌     知识图谱技术已经被广泛用于处理结构化数据(采用本体+D2R技术)和文本数据(采用文本信息抽取技术),但是还有一类非结构化数据,即视觉数据,则相对关注度较低,而且相缺乏有效的技术手段来从这些数据中提取结构化知识。最近几年,虽然有一些模态视觉技术提出,这些技术主要还是为了提升图像分类
模态数据集汇总1、MAHNOB-Mimicry1.1 简介这是一套完全同步的、传感器的、二人互动的音频、视频记录,适用于模仿和谈判行为的研究。该数据库包含了11小时的录音,分为12个成员和48个成员之间的54次互动,他们要么参与社会政治讨论,要么就租赁协议进行谈判。1.2 下载官方下载地址1.3 使用过该数据集的文献[1] N. Rakicevic, O. Rudovic, S. Petrid
前言事件图谱大家听的比较多了,模态相信大家也听到不少,尤其是各种模态模型,如大家对模态预训练模型感兴趣可以看看笔者之前写过的一篇:任务 & 数据集 (1) 任务通过事件以及事件之间的关系来表示真实世界是很多研究课题的手段即通过图谱来表示,之前大多数图谱要么单独是文本要不单独是图像(视频),如果能同时把这两种模态用起来岂不更好?要达到这个目的至少需要两个环节,第一就是各自模态
随着互联网和数字设备的普及与发展,互联网上的图像等多媒体数据飞速增长。如何从海量数据中迅速检索出符合人们意图的图像已经成为当下的研究热点。基于文本的图像检索仅仅通过图像的相关文本进行检索,没有利用图像内容,而基于内容的图像检索由于受到语义鸿沟的困扰,其检索性能仍然无法令人满意。为了缩小语义鸿沟,研究者们提出了模态图像检索方法,通过融合图像的文本信息和底层特征进行检索,但是如何实现两种信息的有效融
MURELMuRel网络是一个端到端的机器学习模型,用于回答关于图像的问题。它依赖于从图像中提取的对象边界盒来构建一个复杂连接图,其中每个节点对应于一个对象或区域。该MuRel网络包含一个MuRel cell,在该cell上迭代以融合问题表示和局部区域特征,逐步细化可视化和问题交互。最后,在对局部表示进行全局聚合之后,它使用双线性模型回答了这个问题。有趣的是,MuRel网络并没有包含一个明确的注意
模态机器学习,旨在通过机器学习的方法实现处理和理解模态信息的能力。目前比较热门的研究方向是图像、视频、音频、语义之间的模态学习。近年来,大规模神经网络模型以及预训练等技术的成功实践推动着计算机视觉和自然语言处理等领域快速发展,同时也推动了模态表征学习的研究。2020年谷歌人工智能大神Jeff Dean就曾指出,模态研究将会是未来研究一大趋势。本期萌喵将带大家一起看看模态研究领域的数据
1. 美团模态召回-搜索业务应用 模态的召回任务,主要在召回和排序列表中存在POI、图片、文本、视频等多种模态结果,如何保证Query和模态搜索结果的相关性面临着很大的挑战,目前更多的模态召回主要应用于电商,短视频推荐搜索等领域。常见的模态召回任务,给定一段query文本,输出图片/视频相似度最高的topk作为结果返回,也就是将item项换成了图片/视频。将query-query匹配任务
MURELMuRel网络是一个端到端的机器学习模型,用于回答关于图像的问题。它依赖于从图像中提取的对象边界盒来构建一个复杂连接图,其中每个节点对应于一个对象或区域。该MuRel网络包含一个MuRel cell,在该cell上迭代以融合问题表示和局部区域特征,逐步细化可视化和问题交互。最后,在对局部表示进行全局聚合之后,它使用双线性模型回答了这个问题。有趣的是,MuRel网络并没有包含一个明确的注意
转载 2023-12-14 06:56:04
529阅读
作者|都一凡方向 | 模态学习 凭借着强大的泛化能力,预训练模型在CV和NLP领域的一系列任务上取得巨大成功。尤其是自以Transformer为架构的预训练模型在NLP领域大放异彩之后,模态领域也尝试引入Transformer融合不同模态之间的交互,从而走上了预训练模型的这条道路。笔者对ICML2021, ACL2021, NIPS2021, EMNLP2021, ACL2022 ARR
前言:本篇博文为译文,翻译自Patrick Langechuan Liu 发表在towards data science的博文 “Multimodal Regression — Beyond L1 and L2 Loss”原博文撰写时间:2019-09-30深度学习最著名的应用是图像分类,其目标是训练神经网络从N个预定义的可能性中选择一个. 经过训练的神经网络可以从许多类别中分辨出一小块图像中的物
作者:张致远 研究背景 目 录 Contents 应用场景 研究进展 早期阶段 引入早期深度网络
转载 2024-08-24 10:08:41
195阅读
  • 1
  • 2
  • 3
  • 4
  • 5