想问一下各位大佬,在对数据集做svm分类时在这个部分一直报这个错误是因为什么呀
原创 2023-06-21 20:37:19
170阅读
1评论
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类器,常用的分类器有SVM,LR,ANN等,对不同场景使用合适的分类器,上面有朋友提到LR,当然LR比较简单而且速度...
SVM
原创 2021-06-10 18:21:49
445阅读
1点赞
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类器,常用的分类器有SVM,LR,ANN等,对不同场景使用合适的分类器,上面有朋友提到LR,当然LR比较简单而且速度...
原创 2022-03-02 09:26:54
284阅读
完整代码及其数据,请移步小编的GitHub  传送门:请点击我  如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言  整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思路混乱。所以我对S
利用sklearn执行SVM分类时速度很慢,采用了多进程机制。 一般多进程用于独立文件操作,各进程之间最好不通信。但此处,单幅影像SVM分类就很慢,只能添加多进程,由于不同进程之间不能共用一个变量(即使共用一个变量,还需要添加变量锁),故将单幅影像分为小幅,每小幅对应一个进程,每个进程对该小幅数据分 ...
转载 2021-11-03 21:53:00
413阅读
2评论
感知机 要理解svm,首先要先讲一下感知机(Perceptron),感知机是线性分类器,他的目标就是通过寻找超平面实现对样本的分类;对于二维世界,就是找到一条线,三维世界就是找到一个面,多维世界就是要找到一个线性表达式,或者说线性方程: f(x) = ΣθiXi 表达式为0,就是超平面,用来做分界线
转载 2019-12-17 10:31:00
358阅读
2评论
1.软件版本MATLAB2013b2.本算法理论知识聚类:首先计算整个数据集合的平均值点,作
分类预测 | Matlab实现QPSO-SVM、PSO-SVMSVM多特征分类预测对比
​ 一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ 2 算法部分 ​​​ ​​​ ​​​ ​ 二、海
原创 2021-07-05 22:28:44
574阅读
​ 一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ ​​​ 2 算法部分 ​​​ ​​​ ​​​ ​ 二、灰
原创 2021-07-05 22:40:12
833阅读
一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ​ ​ ​ ​ ​ ​ ​ ​ ​ 2 算法部分 ​ ​ ​ 二、灰狼算法 灰狼算法 1 前言: 灰狼优化算法(Grey
原创 2021-07-07 16:04:31
639阅读
一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ​ ​ ​ ​ ​ ​ ​ ​ ​ 2 算法部分 ​ ​ ​ 二、海鸥算法 海鸥算法主要模拟了海鸥的迁徙行为和攻击行为
原创 2021-07-07 16:05:38
479阅读
SVM的中文名为支持向量机,是一种非常经典的有监督数据分类算法,也即该算法首先需要训练,训练得到分类模型之后,再使用分类模型对待分类数据进行分类。有监督数据分类算法的大致过程如下图所示:上图中,训练数据与待分类数据通常为n维向量,n可以是1,2,3,4,5,......对于图像,一般有两种方法把其所有像素点的像素值转换为n维向量:方法一:图像数据属于二维矩阵,可以直接把二维矩阵的多行数据按行进行首
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。    支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的
原创 2014-09-30 22:16:02
10000+阅读
close all; clear all; %样本初始化 x1(1,1)=5.1418; x1(1,2)=0.5950; x1(2,1)=5.5519; x1(2,2)=3.5091; x1(3,1)=5.3836; x1(3,2)=2.8033; x1(4,1)=3.2419; x1(4,2)=3.7278; x1(5,1)=4.4427; x1(5,2)=3.8981; x1(
原创 2014-01-10 13:54:00
487阅读
import numpy as npimport matplotlib.pyplot as plt#读取数据dataSet = np.genfromtxt('ex2data2.txt',delimiter=',')# print(dataSet)# x1 = dataSet[:,2]x_data = dataS
原创 2022-05-09 21:59:17
578阅读
SVM 实现多分类思路
原创 2022-08-22 12:07:27
662阅读
原文出处:http://mp.weixin.qq.com/s?__biz=MjM5MzM5NDAzMg==&mid=200729339&idx=1&sn=e22ccad6792621cf74d9baffa6c07097&3rd=MzA3MDU4NTYzMw==&scene=6#rd 1 基础知识 1. 1 样本整理 文本分类属于有监督的学习,所以需要整理样本
转载 精选 2014-10-18 11:05:30
1393阅读
1点赞
1评论
VM多类分类方法的实现根据其指导思想大致有两种:(1)将多类问题分解为一系列SVM可直接求解的两类问题,基于这一系列SVM求解结果得出最终判别结果。(2)通过对前面所述支持向量分类机中的原始最优化问题的适当改变,使得它能同时计算出所有多类分类决策函数,从而“一次性”
转载 2022-12-01 19:35:53
1570阅读
​ 一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ​​​ ​​​ ​​ ...
转载 2021-07-25 18:47:00
263阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5