本文是Quantitative Methods and Analysis: Pairs Trading此书的读书笔记。控制理论(control theory)是工程学的分支之一,主要应对工程系统控制的问题。比如控制汽车发动机的功率输出,稳定电动机的转速,控制“反应速率”(或化学过程的速度),通过所谓的控制变量(control variables)去控制系统。在控制汽车发动机的功率输出的例子中,控制
?作者简介:秃头小苏,致力于用最通俗的语言描述问题?往期回顾:霍夫直线检测
原创 精选 2023-04-05 19:47:14
630阅读
卡尔滤波(Karman Filter)卡尔滤波器是什么?对于卡尔滤波器,实际上用滤波器来描述卡尔滤波器算法其实并不准确。卡尔滤波器最好地叫法是最优化递归数字处理算法(Optimal Recursive Data Processing Algorithm),本质上更加像一个观测器。卡尔滤波器的作用?卡尔滤波器是用来处理我们生活中的不确定性的算法。我们生活中充满了不确定性,无论是测量的数
一、前言 卡尔滤波器是一种最优线性状态估计方法(等价于“在最小均方误差准则下的最佳线性滤波器”),所谓状态估计就是通过数学方法寻求与观测数据最佳拟合的状态向量。 在移动机器人导航方面,卡尔滤波是最常用的状态估计方法。直观上来讲,卡尔滤波器在这里起了数据融合的作用,只需要输入当前的测量值(多个传感器数据)和上一个周期的估计值就能估计当前的状态,这个估计出来的当前状态综合考量了传感器数据(即所
一、什么是卡尔滤波 简单来说,卡尔滤波器是一个“optimal recursive data processing algorithm(最优递归数据处理算法)”。 在自然界中往往存在各种不确定性,不管是传感器测量的数据还是系统模型计算得到的数据,往往不是物体真实的值,存在各种各样的干扰,卡尔滤波就是从有干扰的数据中获取最优(最接近真实)的数据。二、卡尔滤波基础 先来看一个简单的例子,我们用
找遍全网,个人认为这篇讲的最好。卡尔滤波是一种在不确定状况下组合多源信息得到所需状态最优估计的一种方法。本文将简要介绍卡尔滤波的原理及推导。 什么是卡尔滤波首先定义问题:对于某一系统,知道当前状态XtX_t,存在以下两个问题:经过时间 后,下个状态  如何求出?假定已求出 ,在t+1t+1时刻收到传感器的非直接信息 ,如何对状态&
卡尔滤波 详解卡尔滤波原理   在网上看了不少与卡尔滤波相关的博客、论文,要么是只谈理论、缺乏感性,或者有感性认识,缺乏理论推导。能兼顾二者的少之又少,直到我看到了国外的一篇博文,真的惊艳到我了,不得不佩服作者这种细致入微的精神,翻译过来跟大家分享一下  我不得不说说卡尔滤波,因为它能做到的事情简直让人惊叹!意外的是很少有软件工程师和科学家对对它
1.Q、P、R关系P的迭代为P=QTPQ;R为观测的协方差;状态延时高,说明收敛速度慢。 估计参数P越大,收敛的越快。 测量误差R越小,收敛的越快。 调整这两个参数即可,从状态更新上说,测量误差越小,估计参数误差越大,说明我们越相信测量值,自然收敛的快。缺点就是会让系统变化过快,如果测量值更加不准,则精度会下降,系统不够稳定。2.K与Q、R关系k~Q/(R+Q)P0/(Q+R),收敛的快慢程度。总
转载 2023-09-26 17:06:02
686阅读
卡尔滤波公式及推导1 前言卡尔滤波 (Kalman Filter) 是一种关于线性离散系统滤波问题的递推算法。其使用递推的形式对系统的状态进行估计,以测量中产生的误差为依据对估计值进行校正,使被估计的状态不断接近真实值。卡尔滤波的基本思想:根据系统的状态空间方程,利用前一时刻系统状态的估计值和当前时刻系统的观测值对状态变量进行最优估计,求出当前时刻系统状态的估计值。假设线性离散系统的状态空间
学习参考:卡尔滤波器的原理以及在matlab中的实现Opencv实现Kalman滤波器opencv中的KF源码分析Opencv-kalman-filter-mouse-tracking理解: 假设:一个小车距离左侧某一物体k时刻的真实位置状态 ,而位置状态观测值为 ,则小车的线性动态系统可表示为: 位置状态的系统预测值: 位置状态的观测值
自己学习整理卡尔滤波算法,从放弃到精通kaerman 滤波算法卡尔滤波是非常经典的预测追踪算法,是结合线性系统动态方程的维纳滤波,其实质是线性最小均方差估计器,能够在系统存在噪声和干扰的情况下进行系统状态的最优估计,广泛使用在导航、制导、控制相关领域。使用范围及作用一般的滤波算法是频域滤波,而卡尔滤波是时域滤波。 不要求系统的信号和噪声都是平稳的,但默认估计噪声和测量噪声均为白噪声,这样其均
一、Kalman用于解决什么的问题?          卡尔滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。        人话:        线性数
过程方程:X(k+1) =  A X(k) + B U(k) + W(k)               >>>>式1测量测方程:Z(k+1) = &nbsp
原创 2016-11-15 23:13:22
1974阅读
卡尔滤波(Kalman filtering...
转载 2019-07-14 19:52:00
235阅读
2评论
卡尔滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。斯坦利·施密特(Stanley Schmidt)首次实现了卡尔滤波器。卡尔在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波
转载 2022-03-24 13:40:16
1080阅读
目录一、卡尔滤波的基本方程二、基本方程的使用要点初值的选取估值均方误差真阵的等价形式的选用一步转移矩阵的计算三、小结 一、卡尔滤波的基本方程       经过前面三篇文章的铺垫,我们可以开始说说卡尔滤波器了。首先要说的是,卡尔滤波器的本质是线性最小方差估计。所以它也是最优估计的一种。可以认为卡尔滤波是线性最小方差估计
前言主要讲解当初做飞卡时,直立所用的卡尔滤波,本文章只涉及少量理论,主要是公式推导和程序讲解,建议大家事先了解卡尔滤波的效果及公式意义。一. 卡尔滤波主要公式首先是状态方程和观测方程:  x(k) = A · x(k-1) + B · u(k) + w(k)               z(k) = H
卡尔滤波是一种在不确定状况下组合多源信息得到所需状态最优估计的一种方法。本文将简要介绍卡尔滤波的原理及推导。什么是卡尔滤波首先定义问题:对于某一系统,知道当前状态Xt,存在以下两个问题:经过时间△t后,下个状态Xt+1如何求出?假定已求出Xt+1,在t+1时刻收到传感器的非直接信息Zt+1,如何对状态Xt+1进行更正?这两个问题正是卡尔滤波要解决的问题,形式化两个问题如下:预测未来修正当下
此文章需要有卡尔滤波基础知识的储备(因为文中并没有对具体公式推导作详细的说明)卡尔滤波能做什么呢?这是一个很好的问题,其实呢,卡尔滤波能做的事情很多,这里呢,我参考了多位博主的文章从而得出结论,这里就以我学习的经验来向各位朋友分享我的收获与心得,并且呢,这里我将使用卡尔滤波作用在超声波模块测距实例上,对超声波模块测量得到的距离作未滤波滤波后波形的这样一个对比。废话不多说,咱们先直接上波形
01 简介:Why MPU6050?MPU 6050等IMU传感器用于自平衡机器人,无人机,智能手机等。IMU传感器帮助我们在三维空间中获得连接到传感器的物体的位置。这些值通常是角度,以帮助我们确定其位置。它们用于检测智能手机的方向,或者用于Fitbit等可穿戴设备,它使用IMU传感器跟踪运动。MPU6050 它是全球首例整合性 6 轴运动处理组件,俗称的六轴陀螺仪(x y z 三轴的倾斜角度和三
  • 1
  • 2
  • 3
  • 4
  • 5