1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用 它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有S
转载
2023-07-11 20:00:57
108阅读
Spark存储分析整体框架存储级别RDD存储调用读数据过程本地读取远程读取写数据过程写入内存写入磁盘 整体框架Spark的存储采取了主从模式,即Master / Slave模式,整个存储模块使用RPC的消息通信方式。其中:Master负责整个应用程序运行期间的数据块元数据的管理和维护Slave一方面负责将本地数据块的状态信息上报给Master,另一方面接受从Master传过来的执行命令。如获取数
转载
2023-09-19 00:34:17
164阅读
### Spark RDD存储级别详解
在Spark中,RDD(弹性分布式数据集)是一种抽象的数据结构,它可以在集群上并行进行处理。在Spark中,RDD的存储级别决定了RDD的数据如何存储在内存或磁盘中,从而影响了Spark作业的性能和可靠性。
### RDD存储级别种类
Spark提供了多种不同的RDD存储级别,可以根据实际需求选择合适的存储级别:
- **MEMORY_ONLY**:
原创
2024-04-06 03:25:41
56阅读
cache/persist 持久化cache设置RDD缓存级别为 只在内存中 存储;其实内部调用的就是persist()方法persist可以灵活的设置RDD缓存级别(方式); 具体pyspark中如下;具体选用哪种,基本优缺点 和 内存/磁盘 的一样;根据情况选择from pyspark import StorageLevel
StorageLevel.DISK_ONLY # 存储方式:磁盘;
转载
2023-10-09 10:49:56
151阅读
将 Spark RDD 存储到 HBase 中的过程涉及到多个技术组件的配置、编译和调优,以下是整合这些内容的复盘记录,以便于后续的实现和优化。
### 环境配置
在进行 Spark RDD 存储到 HBase 的实现之前,首先需要配置相应的环境。以下是环境配置的步骤:
1. 安装必要的软件包
2. 配置 Hadoop 和 HBase 环境变量
3. 下载并配置 Spark
| 软件
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、基本概念1.RDD的生成2.RDD的存储3.Dependency4.Transformation和Action4.1 Transformation操作可以分为如下几种类型:4.1.1 视RDD的元素为简单元素。4.1.2 视RDD的元素为Key-Value对:4.2 Action操作可以分为如下几种:5.shuffl
转载
2023-11-14 09:26:59
105阅读
窄依赖所谓窄依赖就是说子RDD中的每个分区(partition)只依赖于父RDD中有限个数的partition。在API中解释如下: 窄依赖在代码中有两种具体实现,一种是一对一的依赖:OneToOneDependency,从其getparent方法中不难看出,子RDD只依赖于父 RDD相同ID的Partition。另外一种是范围的依赖,RangeDependency,它仅仅被org.apache
转载
2023-06-11 15:26:05
137阅读
是什么 SparkSql 是Spark提供的 高级模块,用于处理结构化数据,开发人员可以使用HiveQL 和SQL语言 实现基于RDD的大数据分析, 底层基于RDD进行操作,是一种特殊的RDD,DataFrameRDD类型 1. 将SQL查询与Spark无缝混合,可以使用SQL或者Da
转载
2023-08-10 20:44:14
114阅读
一,RDD概述 1.1 什么是RDD 1.2 RDD的属性二,创建RDD三,RDD编程API 3.1 Transformation 3.2 Action 3.3 WordCount 3.4 练习四,RDD的依赖关系 4.1 窄依赖 4.2 宽依赖 4.3 Lineage 正文一,RDD概述 1.1 什么是R
转载
2023-07-09 11:59:12
225阅读
一、Spark包括什么spark的核心是Spark Core,其中上面的Spark Sql对接的是Hive等结构化查询,Spark Streaming是对接的流式计算,后面的那两个也是主要用在科学任务中,但是他们的基础都是spark core,而Spark core的核心就是RDD操作,RDD的操作重要的就是算子,也就是说,掌握了算子基本上就掌握了spark的基础。二、RDD1、是什么? 
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创
2021-08-04 13:56:33
192阅读
RDD是“Resilient Distributed Dataset”的缩写,从全称就可以了解到RDD的一些典型特性。Resilient(弹性):RDD之间会形成有向无,数据库等。
原创
2024-04-30 14:59:51
316阅读
Spark最基本、最根本的数据抽象
RDD基于内存,提高了迭代式、交互式操作的性能
RDD是只读的,只能通过其他RDD批量操作来创建,提高容错性 另外RDD还具有位置感知性调度和可伸缩性
RDD只支持粗粒度转换,记录Lineage,用于恢复丢失的分区,从物理存储的数据计算出相应的RDD分区
 
转载
2024-06-11 16:53:40
34阅读
常用SparkRDD容易混淆的算子区别1.map与flatMap的区别# 初始化数据
val rdd1 = sc.parallelize(Array("hello world","i love you"))map# map算子
rdd1.map(_.split(" ")).collect
# map算子结果输出
res0: Array[Array[String]] = Array(Array(h
转载
2023-09-28 12:39:08
312阅读
文章目录一、提出任务二、完成任务(一)、新建Maven项目(二)、添加相关日志依赖和构建插件(三)、创建日志属性文件(四)、创建分组排行榜榜单单例对象(五)本地运行程序,查看结果(六)交互式操作查看中间结果1、读取成绩文件得到RDD2、利用映射算子生成二元组构成的RDD3、按键分组得到新的二元组构成的RDD4、按值排序,取前三5、按指定格式输出结果 一、提出任务分组求TOPN是大数据领域常见的需
转载
2023-10-29 00:33:31
136阅读
spark RDD目录spark RDD关于sparkRDD基本概念学习对于RDD的基本操作主从节点的启动spark的初始化RDD创建调用parallelize()方法并行化生成RDD使用外部存储中的数据集生成RDD注意事项正式的、RDD的基础操作WordCount的例子RDD转化操作transformationRDD行动操作actions总结基本编程步骤总结没有做的实践操作导入并使用jar包集成
转载
2023-12-11 10:33:02
57阅读
1基本RDD1.1 针对各个元素的转化操作map()、filter()两个最常用的转化操作是map()和filter()。转化操作map()接收一个函数,把这个函数用于RDD中的每个元素,每个元素经函数的返回结果作为新RDD中对应元素的值。而转化操作filter()则接收一个函数,并将RDD中满足该函数的元素放入新RDD中返回。 例如,用map()对RDD中的所有数求平方:val input =
转载
2023-10-14 02:06:03
121阅读
1. Tranformation
val lines=sc.textFile(file:///usr/local/spark/mycode/rdd/word.txt)
### #1. map map(func) 将每个元素传递给函数 func 中,并将返回结果返回为一个新的数据集
scala> val data=Array(1,2,3,4,5)
scala> val rd
转载
2023-11-09 16:22:41
60阅读
一、学习Spark RDD RDD是Spark中的核心数据模型,一个RDD代表着一个被分区(partition)的只读数据集。 RDD的生成只有两种途径: 一种是来自于内存集合或外部存储系统; 另一种是通过转换操作来自于其他RDD; 一般需要了解RDD的以下五个接口: partition 分区,一个RDD会有一个或者多个分区 dependencies() RDD的依赖关系 preferredLo
转载
2023-07-28 21:14:58
149阅读
# 使用Spark的RDD存储在内存中的指南
Apache Spark 是一个强大的分布式计算框架,能够有效处理大规模数据。RDD(弹性分布式数据集)是Spark的核心数据结构,可以在内存中存储数据并进行并行计算。对于刚入行的小白来说,了解如何在内存中存储RDD至关重要。本文将通过一个简单的流程引导你实现这一目标。
## 流程概览
下面是使用Spark创建和存储RDD的基本流程:
| 步骤