Key-Value型Transformation算子Transformation处理的数据为Key-Value形式的算子,大致可以分为3种类型:输入分区与输出分区一对一、聚集、连接操作。1.输入分区与输出分区一对一mapValues(f)针对(Key, Value)型数据中的 Value进行Map操作,而不对Key进行处理。图3-19中的方框代表RDD分区。a=>a+2代表只对
转载 2024-08-13 16:36:32
141阅读
一、spark简介Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架。Spark是用Scala程序设计语言编写而成,运行于Java虚拟机(JVM)环境之上。目前支持如下程序设计语言编写Spark应用:Scala、Java、Python、Clojure、R。1.1 重要概念RDD:(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spar
# Spark聚合操作的实现 ## 介绍 在大数据处理中,Spark是一个非常流行的开源框架。它提供了许多强大的操作和功能,其中之一就是聚合(Aggregation)操作。聚合操作可以将大规模的数据集合并和计算,得到我们想要的结果。本文将教会你如何在Spark中实现聚合操作。 ## 流程图 首先,让我们来看一下整个流程的图表表示: ```mermaid flowchart TD;
原创 2024-01-06 10:43:47
55阅读
# Spark中的agg操作 ## 概述 Spark是一个强大的分布式计算框架,可以用于处理大规模数据集。其中,agg(Aggregate)是一个常用的操作,用于对数据进行聚合计算。本文将介绍如何在Spark中使用agg操作,并提供详细的步骤和示例代码。 ## 流程图 ```mermaid flowchart TD A[加载数据] --> B[进行聚合计算] B --> C
原创 2024-01-09 04:33:38
232阅读
1、DataFrame的组成DataFrame是一个二维表结构,那么表格结构就有无法绕开的三个点:行列表结构描述在MySQL中的一张表:由许多行组成数据也被分成多个列表也有表结构信息(列、列名、列类型、列约束等)基于这个前提,DataFrame的组成如下:在结构层面: StructType对象描述整个DataFrame的表结构 StructField对象描述一个列的信息在数据层面 Row对象记录一
在处理大数据和进行数据分析时,Apache Spark SQL 是一个至关重要的工具。尤其是在使用 `agg` 方法进行聚合操作时,精确的配置与参数调优决定了其性能与效果。在这篇博文中,我将详细记录下如何解决 Spark SQL 的 `agg` 相关问题,包括环境配置、编译过程、参数调优、定制开发、错误集锦和生态集成等多个方面。 ```mermaid mindmap root((环境配置))
原创 6月前
55阅读
# Spark中的聚合和重命名操作:一个初学者指南 作为一名经验丰富的开发者,我经常被问到如何在Apache Spark中实现聚合和重命名操作。今天,我将通过这篇文章,向刚入行的小白们介绍如何在Spark中实现`agg`和`rename`操作。 ## 1. Spark聚合和重命名操作流程 首先,让我们通过一个简单的流程图来了解整个操作的步骤: ```mermaid stateDiagram
原创 2024-07-23 10:50:36
84阅读
spark基本的RDD算子:在学习spark的过程中,有这样几个算子非常重要,但是却容易混淆。在这里我想做一下记录.1) 第一个是aggregate算子.我们首先可以看看aggregate算子的api,def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U这个算子接收三个参
转载 2023-12-12 13:10:43
45阅读
一、什么是Spark官网:http://spark.apache.orgApache Spark™ is a multi-language engine for executing data engineering, data science, and machine learning on single-node machines or clusters.Spark是一种快速、通用、可扩展的大数
转载 2023-09-21 16:57:21
122阅读
如果你是Java开发,还使用过 jdk1.8 的 storm 算子,RDD的常用算子理解起来就不难了。1.Transformationspark 常用的 Transformation 算子如下表:Transformation 算子Meaning(含义)map(func)对原RDD中每个元素运用func函数,并生成新的RDDfilter(func)对原RDD中每个元素使用func函数进行过滤,并生成
转载 2023-08-10 15:49:45
89阅读
背景介绍:最近在对一个Spark任务进行调优时,在260G的输入数据上跑,总会在执行8-9小时后抛出Too large frame的异常。对此异常进行深入了解,也尝试了很多解决办法,现将其总结以备往后参考。 Too large frame异常的原因:Spark抛出Too large frame异常,是因为Spark对每个partition所能包含的数据大小有写死的限制(约为2G),当某个
转载 2023-11-25 22:00:53
148阅读
Transformation:1.mapmap的输入变换函数应用于RDD中所有元素,而mapPartitions应用于所有分区。区别于mapPartitions主要在于调用粒度不同。如parallelize(1 to 10, 3),map函数执行10次,而mapPartitions函数执行3次。2.filter(function)过滤操作,满足filter内function函数为true的RDD内
RDD 是spark抽象出来的运算逻辑,RDD中是不存储数据的,只记录数据的操作和RDD之间的血缘关系,只有执行到行动算子的时候才会处理真正的数据!1.1 reducereduce将RDD中元素两两传递给输入函数,同时产生一个新值,新值与RDD中下一个元素再被传递给输入函数,直到最后只有一个值为止。def main(args: Array[String]): Unit = { val sc:
转载 2024-07-31 21:03:23
77阅读
 一、spark常用算子1、Transformations转换算子    1.概念:       Transformations类算子是一类算子(函数)叫做转换算子,如map,flatMap,reduceByKey等。Transformations算子是延迟执行,也叫懒加载执行。 &nbs
转载 2023-08-31 21:48:25
129阅读
RDD创建了, 就可以进行一些列的转换操作了。Spark算子分为Transformation算子和Action算子。其中Transformation算子可以将RDD转换成新的RDD,Action算子将RDD消化,在控制台打印或者持久化到文件系统或数据库。 Spark 算子详解(一)1. Transformation 算子1.1 map1.2 flatMap1.3 filter1.4 distinc
转载 2023-07-21 19:44:03
97阅读
                                 &n
转载 2023-07-12 11:24:45
90阅读
1 算子简介算子是一个函数空间到函数空间上的[映射]O:X→X。广义上的算子可以推广到任何空间,如[内积空间]等。RDD上的方法称为算子在 RDD 上支持 2 种操作:transformation转换从一个已知的 RDD 中创建出来一个新的 RDD 例如: map就是一个transformation.*action *行动在数据集上计算结束之后, 给驱动程序返回一个值. 例如: reduce就是一
转载 2024-01-30 23:06:14
68阅读
目录1.Spark算子的分类1.1 从大方向来说,Spark算子大致可以分为两类:1.2 从小方向来说,Spark算子大致可以分为以下三类:1.3 Spark算子分类及功能2.Spark算子的功能详解2.1 Transformations算子2.2 Actions算子1.Spark算子的分类1.1 从大方向来说,Spark算子大致可以分为两类:(1)Transformation 变换/转换算子:这
Spark32个常用算子总结1、Transformations算子含义:create a new dataset from an existing on 从已经存在的创建一个新的数据集RDDA---------transformation----------->RDDBmap:map(func)将func函数作用到数据集的每一个元素上,生成一个新的分布式的数据集返回例子:1data = [1
转载 2023-11-15 13:12:24
104阅读
从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理。 2)Action 行动算子:这类算子会触发 SparkContext 提交 Job 作业。 从小方向来说,Spark 算子大致可以分为以下三类: 1)Value数据类型的Transformation算子   2)Key-Value数据类型
转载 2023-07-21 20:16:33
130阅读
  • 1
  • 2
  • 3
  • 4
  • 5