一、RDD序列化在运行spark任务的时候,通常初始化工作是在Driver端完成,实际的运行逻辑RDD实在executor端执行,需要进行远程通信,要进行序列化。说明:driver端执行算子意外的代码,executor端执行算子相关代码在RDD操作中通常是内部匿名函数,这是会进行闭包检查,判断RDD中的元素和变量是否需要进行序列化,这过程我们称为闭包检查,思路如下:序列化方式:实现serializ
转载 11月前
47阅读
文章目录Hadoop(伪分布)+ Spark(Local)软件安装及环境配置前言一、安装虚拟机1.下载Ubuntu16.04镜像二、Hadoop安装及配置(伪分布式)1.创建hadoop用户2.更新apt3.安装SSH、配置SSH无密码登陆4.安装Java环境5.安装Hadoop3.1.36.Hadoop伪分布式配置三、安装 Spark2.4.01.下载Spark2.4.02.安装Spark(L
转载 2023-11-18 23:36:04
9阅读
首先Spark是借鉴了mapreduce并在其基础上发展起来的,继承了其分布式计算的优点并改进了mapreduce明显的缺陷。 但是二者也有不少的差异具体如下:ApacheSpark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类HadoopMapReduce的通用并行计算框架,Spark拥有Had
转载 2023-08-01 22:14:37
69阅读
有以下四个不同:1. 解决问题的层面不一样Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。 同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一
转载 2023-09-26 15:52:54
48阅读
Spark框架一、Spark概述1.1 Spark是什么1.2 Spark & Hadoop1.3 Spark / Hadoop(1)Hadoop MapReduce(2) Spark1.4 Spark核心模块 一、Spark概述1.1 Spark是什么Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。1.2 Spark & HadoopSpark与Hadoop
转载 2023-09-01 11:06:45
75阅读
目的 首先需要明确一点,hadoophe spark 这二者都是大数据框架,即便如此二者各自存在的目的是不同的。Hadoop是一个分布式的数据基础设施,它是将庞大的数据集分派到由若干台计算机组成的集群中的多个节点进行存储。Spark是一个专门用来对那些分布式存储的大数据进行处理的工具,spark本身并不会进行分布式数据的存储。两者的部署 Hadoop的框架最核心的设计就是:HDFS和MapRedu
转载 2023-07-12 11:53:59
70阅读
Spark概述什么是SparkSpark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。SparkHadoop的区别SparkHadoop 的区别:HadoopHadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,专用于数据批处理的框架,有存储也有计算,但是核心是计算且是离线计算。作为 Hadoop 分布式文件系统,HDFS 处于
转载 2023-09-01 11:06:55
56阅读
运行 Spark 示例 注意,必须安装 Hadoop 才能使用 Spark,但如果使用 Spark 过程中没用到 HDFS,不启动 Hadoop 也是可以的。此外,接下来教程中出现的命令、目录,若无说明,则一般以 Spark 的安装目录(/usr/local/spark)为当前路径,请注意区分。 在 ./examples/src/main 目录下有一些 Spark 的示例程序,有 Scala、J
目录Spark概述Spark 是什么Spark and HadoopHadoopSparkSpark or HadoopSpark 核心模块 Spark概述Spark 是什么Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。Spark and Hadoop在之前的学习中,Hadoop 的 MapReduce 是大家广为熟知的计算框架,那为什么咱们还 要学习新的计算框架 Spar
转载 2023-07-12 11:57:47
71阅读
这两天在搭建HadoopSpark的平台,要求是能够运行Spark,并且用python编程。笔者也不打算写一个很详细的细节教程,简单做一个笔记blog。1.选择        笔者一开始是在虚拟机上搭建的,创建了三个ubuntu虚拟机,然后开始布置分布式系统,但是,后来发现,资源完全不够用。笔者台式机16G内存,2T硬盘,i7第四代处理器,然而,还是被ha
转载 2023-08-29 17:05:02
89阅读
day01 spark初步学习一 sparkhadoop的区别1 比较hadoop的mapreduce对应sparkhadoop是面向磁盘的,spark是面向内存的spark在内存中运行是Hadoop的100倍但是spark对于内存要求很高,所以不能完全取代mapreduce2 架构mp:(map:分发,reduce:归约)迭代过程中 磁盘io次数严重影响计算时间spark 在内存中运行 大大减
转载 2023-07-12 11:57:22
15阅读
SparkHadoop的对比 Spark的中间数据放到内存中,对于迭代运算效率更高。Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。SparkHadoop更通用。Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map, filter, flatMap, sample, groupByKey, redu
转载 2023-07-25 00:22:28
36阅读
准备工作一:创建一个HBase表这里依然是以student表为例进行演示。这里假设你已经成功安装了HBase数据库,如果你还没有安装,可以参考大数据-04-Hbase入门,进行安装,安装好以后,不要创建数据库和表,只要跟着本节后面的内容操作即可。因为hbase依赖于hadoop,因此启动和停止都是需要按照顺序进行 如果安装了独立的zookeeper 启动顺序: hadoop-> zookee
转载 2023-07-13 11:19:03
72阅读
最近在招聘面试的时候,往往听到应聘者在介绍Spark的时候,通常拿Spark官网案例SparkHadoop做比较。当我问到为什么SparkHadoop快时候,得到的答案往往是:Spark是基于内存的计算,而Hadoop是基于磁盘的计算;Spark是一种内存计算技术。果真如此吗?事实上,不光Spark是内存计算,Hadoop其实也是内存计算。SparkHadoop的根本差异是多个任务之间的数据
参考网站: Linux下配置jdk1.7- Hustc的专栏 - 博客频道 - CSDN.NET 高效搭建Spark完全分布式集群- 服务器负载均衡 - 次元立方网 - 电脑知识与技术互动交流平台 hadoop学习之hadoop完全分布式集群安装- 落魄影子 - 博客频道 - CSDN.NET hadoop2.2完全分布式最新高可靠安装文档-Hadoop2|YARN-about云开发 S
转载 2023-07-25 00:22:06
109阅读
首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处
转载 2023-07-06 18:45:22
83阅读
一、SparkHadoop的关系  SparkHadoop只是共用了底层的MapReduce编程模型,即它们均是基于MapReduce思想所开发的分布式数据处理系统。  Hadoop采用MapReduce和HDFS技术,其MapReduce计算模型核心即Map操作和Reduce操作,在这个计算模型的工作流程中还存在一些可以由用户自定义的Partition和Combine等操作;HDFS则是对H
转载 2023-07-12 11:58:09
100阅读
Hadoop+spark集群搭建 说明:本文档主要讲述hadoop+spark的集群搭建,linux环境是centos,本文档集群搭建使用两个节点作为集群环境:一个作为Master节点,另一个作为Slave节点,由于spark依赖scala,所以需要安装scala搭建步骤:一:安装jdk二:安装hadoop集群(http://www.powerxing.com/install-
转载 2023-09-14 08:35:25
169阅读
尽管Hadoop在分布式数据分析领域备受瞩目,但还是有其他选择比典型的Hadoop平台更具优势。最近很多人都在讨论Spark这个貌似通用的分布式计算模型,国内很多机器学习相关工作者都在研究和使用它。Spark是一种可伸缩(scalable)的基于内存计算(In-Memory Computing)的数据分析平台,比Hadoop集群存储方法更有性能优势。Spark采用Scala语言实现,提供了单一的数
转载 2023-09-14 13:04:01
78阅读
为什么Spark发展不如Hadoop, 一说大数据,人们往往想到 Hadoop 。这固然不错,但随着大数据技术的深入应用,多种类型的数据应用不断被要求提出, 一些Hadoop被关注的范畴开始被人们注意,相关技术也迅速获得专业技术范畴的应用。最近半年来的Spark之热就是典型例子。 是一个基于RAM计算的开源码ComputerCluster运算系统,目的是更快速地进行数据分析。S
转载 2023-10-26 13:05:21
46阅读
  • 1
  • 2
  • 3
  • 4
  • 5