前面的话在前面的秘籍一:模型加速之轻量化网络、秘籍二:非极大抑制算法和回归损失优化之路、秘籍三:多尺度检测中,我们主要关注了轻量化网络,非极大值抑制算法、回归损失优化以及目标检测中的小目标检测。但是以笔者参加计算机视觉相关竞赛的经验(接下来会更新相关竞赛系列)来看,数据增强和模型融合是比赛涨分的大杀器,好的数据增强可以有效地抑制模型的过拟合,同时对于小样本量的数据集的训练往往有理想的效果。数据增强
转载
2024-01-01 22:20:23
4阅读
随着信息技术的高速发展、数据库管理系统的广泛应用,人们积累的数据量急剧增长,大量的信息给人们带来方便的同时,也带来了诸如:信息过量难以消化,信息真假难以辨识,信息安全难以保证,信息形式不一致难以统一处理等问题。如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。 数据挖掘就是对观测到的数据集进行分析,目的是发现未知的关系和以数据拥有者可
转载
2024-09-21 08:55:19
17阅读
如题
目录图像增强是什么?为什么要图像增强?图像增强的处理分类思维导图总览图像增强是什么?为什么要图像增强?是什么?图像增强是数字图像处理的基本内容之一,使图像的视觉效果发生变化, 某些特定信息得到增强。为什么?根据特定应用的需要突出图像中的某些特定信息,削弱不需要的信息,以达到扩大图像中不同物体特征之间的差别,使得处理后的图像对于这个特定应用
转载
2023-08-13 12:34:28
238阅读
GridMask Data Augmentation, ARXIV 2020代码地址:https://github.com/akuxcw/GridMask这篇论文提出了一种简单的数据增强方法,在图像分类、检测、分割三个任务进行实验,效果提升明显。1. Introduction作者首先回顾了数据增强(Data augmentation)方法,指出当前方法有三类:spatial transformat
转载
2024-01-29 12:24:15
228阅读
1 定义扩展用于训练模型的数据量的过程称为数据增强。2 数据增强类别2种(1)离线增强。预先进行所有必要的变换,从根本上增加数据集的规模(例如,通过翻转所有图像,保存后数据集数量会增加2倍)。 (2)在线增强,或称为动态增强。可通过对即将输入模型的小批量数据的执行相应的变化,这样同一张图片每次训练被随机执行一些变化操作,相当于不同的数据集了。3 数据增强技术4 tf的数据增强api5 pytorc
转载
2024-07-30 12:17:16
343阅读
数据增强策略:
1 在线模式--训练中
随机裁剪(完全随机,四个角+中心) crop
def random_crop(img, scale=[0.8, 1.0], ratio=[3. / 4., 4. / 3.], resize_w=100, resize_h=100):
"""
随机裁剪
转载
2023-08-23 09:25:42
221阅读
在图像分类任务中,图像数据增强一般是大多数人会采用的方法之一,这是由于深度学习对数据集的大小有一定的要求,若原始的数据集比较小,无法很好地满足网络模型的训练,从而影响模型的性能,而图像增强是对原始图像进行一定的处理以扩充数据集,能够在一定程度上提升模型的性能。本文是我目前正在研究一项内容,总结图像数据增强的一些方法及其有效性。本研究的目的是学习
转载
2023-10-11 11:49:39
174阅读
OpenCV--Python 图像增强图像增强主要解决由于图像的灰度级范围较小造成的对比度较低的问题,目的就是将输出图像的灰度级放大到指定的程度,使得图像中的细节看起来增加清晰。对比度增强有几种常用的方法,如线性变换、
转载
2023-11-07 20:14:59
90阅读
USER_EXIT 增强位置:在程序中以USER_EXIT打头的子例程S
原创
2021-07-12 10:21:40
142阅读
常用医学数据增强算法传统数据增强算法mix up数据增强Samplepairing 数据增强是对训练样本的各种有章法的变换,这就使得模型能够学到图像更本质的特征,增强模型对样本细微变换的适应性,减弱对变化的敏感。 传统数据增强算法通过对图片进行针对图像整体的物理几何变换:翻转、平移、放大、缩小等。 还有针对图像像素增加噪声的增强方法:高斯噪声、椒盐噪声等。 这些传统数据增强算法作用有限,尤其是
转载
2023-10-19 11:11:43
120阅读
数据增强 文章目录数据增强常用的数据增强方法1.1 随机比例缩放主要使用的是1.2随机位置截取1.3 随机的水平和竖直方向翻转1.3 随机角度旋转1.4 亮度、对比度和颜色的变化 前面我们已经讲了几个非常著名的卷积网络的结构,但是单单只靠这些网络并不能取得很好的结果,现实问题往往更加复杂,非常容易出现过拟合的问题,而数据增强的方法是对抗过拟合问题的一个重要方法。 2012 年 AlexNet 在
转载
2023-08-28 18:39:05
87阅读
数据增强是机器学习和深度学习领域中常用的一种技术,主要用于通过对原始数据集进行变换,以增加数据的多样性和质量,进而提升模型的性能。本文将详细介绍如何使用Python实现数据增强,包含环境准备、集成步骤、配置详解、实战应用、排错指南及性能优化。
## 环境准备
在开始之前,我们需要确保开发环境已经搭建完善。这包含一些必要的Python库和工具的安装。
### 依赖安装指南
我们将使用以下库进
# Python数据增强
数据增强是在机器学习和计算机视觉中广泛应用的一种技术,它通过对训练数据进行变换和扩充,以增加训练样本的多样性,改善模型的鲁棒性和泛化能力。Python提供了丰富的库和工具,可以帮助我们实现数据增强的目的。
## 什么是数据增强?
在机器学习和计算机视觉任务中,通常需要大量的训练数据来训练模型。然而,获取大量的标注数据是一项昂贵且耗时的任务。数据增强的目的就是通过对训
原创
2023-09-08 04:12:37
187阅读
# Python数据增强实现指南
作为一名经验丰富的开发者,我很高兴能够教会你如何实现Python数据增强。数据增强是一种常见的技术,它可以通过对数据进行多样化的变换和处理,来扩充数据集,从而提高机器学习和深度学习模型的性能。
在本文中,我将向你介绍Python数据增强的整个流程,并提供每一步所需的代码和注释。首先,我们来看看整个过程的流程图。
## 数据增强的流程图
```flow
st
原创
2023-08-12 11:28:59
215阅读
近几天在研究数据增强的方式,看到了mosaic,并且需要用到它,查阅了一些代码,根据个人数据,修改了代码,现有三套代码实现了mosaic,但也有些许问题。 mosaic数据增强方式是一次性从数据集中随机读取四张图片进行放缩或裁剪,然后将初步处理的四张图片按照左上、左下、右下、右上的顺序进行位置分布,组合后得到一张新的图,并将标签数据处理后进行对应。mosaic的优势,一次性输入四张图,受batch
转载
2023-10-09 10:03:51
124阅读
各位同学好,今天和大家分享一下目标检测算法中常用的图像数据增强方法 Mosaic。先放张图看效果。将四张图片缩放后裁剪拼接在一起,并调整检测框的坐标位置,处理位于图像边缘的检测框。文末有完整代码1. 方法介绍Mosaic 数据增强算法将多张图片按照一定比例组合成一张图片,使模型在更小的范围内识别目标。Mosaic 数据增强算法参考 CutMix数据增强算法。CutMix数据增强算法使用两
转载
2023-10-10 18:30:05
109阅读
摘要本文提出了一种结合亮度域和残差学习技术的卷积神经网络热图像增强方法,提高了增强性能和收敛速度。通常,训练域使用与目标图像相同的域;然而,我们评估了几个域,以确定最适合网络的域。在分析中,我们首先比较了分别由基于颜色和对齐红外图像的相应区域训练的网络的性能,包括热光谱、远光谱和近光谱。然后,评估四个基于RGB的区域,即灰度、亮度、强度和亮度。最后,通过考虑残差域和亮度域来确定所提出的网络结构。分
转载
2023-12-07 22:32:46
88阅读
手机信号放大器,又名手机信号增强器,已经不再是一个陌生的名词了。随着移动电话的不断普及,手机已经成为人们日常生活中必不可少的一件通讯工具。但是由于现代的建筑主要都是采用钢筋混凝土结构,而钢筋对电磁波的吸收非常大,因此让本来已经很微弱的手机信号产生进一步的衰减,导致室内信号差。影响到人们的正常工作与生活,因此市场上对手机信号放大器的需求也不断增大。 但现在市面上的手机放大器可谓五花八门,良莠不齐。所
转载
2024-01-31 04:27:24
79阅读
Python:图像数据增强和保存
在进行模型分析处理的时候,数据量不够的情况下,会使用数据增强的方式来扩充数据。数据增强的方式有:裁剪、镜像图片翻转、增加噪声等。需要注意的是数据增强后不应该影响 数据的标签。比如,数字识别时的 9 和 6 旋转后,会改变标签,影响数据。
转载
2023-07-17 23:21:15
192阅读
数据增强策略:
1 在线模式--训练中
随机裁剪(完全随机,四个角+中心) crop
def random_crop(img, scale=[0.8, 1.0], ratio=[3. / 4., 4. / 3.], resize_w=100, resize_h=100):
"""
随机裁剪
:param img:
:param scale: 缩放
:par
转载
2023-07-24 23:56:53
138阅读