一、实时数查询需求在正式讨论实时数前,我们先看下行业对实时数主要需求,这有助于我们理解实时数各种方案设计初衷,了解它是基于哪些需求应运而生。这也将帮助我们从更多维度上思考需求、条件、落地难点等等一些关键要素之间如何评估和权衡,最终实现是基于现有条件下功能如何将其价值最大化。传统意义上我们通常将数据处理分为离线实时。对于实时处理场景,我们一般又可以分为两类:诸如监控报警类、大屏
目前企业数据架构基本也就包含3种模式,离线数实时数实时流。 离线数没有任何歧义,实时数实时流之前有什么区别呢?从技术实现上,实时数肯定可以通过实时流来实现,那么为什么会把这2种东西做一个区分. 在概念上,数据主题和指标会有很多,通常离线做一套,实时也会做一套,保证有些指标能实时出数据,这部分实际上是更多倾向报表类型,比如公司大屏展示,而很多业务系统也需要实时计算数据,不仅
转载 2024-01-15 02:37:59
51阅读
实时数考虑到时效性问题,分层设计需要尽量精简,降低中间流程出错可能性,不过总体而言,实时数还是会参考离线数分层思想来设计。从传统经验来讲,我们认为数有一个很重要功能,即能够记录历史。通常,数都是希望从业务上线第一天开始有数据,然后一直记录到现在。但实时处理技术,又是强调当前处理状态一门技术,所以我们认为这两个相对对立方案重叠在一起时候,它注定不是用来解决一个比较广泛问题
随着数字化进程推进,企业产生数据越来越多,与此同时企业对数据需求也变得越来越复杂多样。如何解决大规模复杂数据存储和计算,已经成为很多企业必须面对问题?这值得我们深思。一、为何需要实时数架构最初企业存储数据都在数中存储,但是随着数据量增大,传统数据方案在时效性上和数据维护上变得越来越困难。实时数架构应运而生。然而问题并不是这么简单,在具体方案落地上实时数有很多方案可以选择,那么
随着数据应用场景越来越丰富,企业对数据价值反馈到业务中时效性要求也越来越高,很早就有人提出过一个概念:数据价值在于数据在线化。实时计算起源于对数据加工时效性严苛需求:数据业务价值随着时间流逝会迅速降低,因此在数据产生后必须尽快对其进行计算和处理,从而最大效率实现数据价值转化,对实时数建设需求自然而然诞生了。而建设好实时数需要解决如下几个问题:一、稳定性:实时数对数据实时
一、实时数建设背景1. 实时需求日趋迫切目前各大公司产品需求和内部决策对于数据实时要求越来越迫切,需要实时数能力来赋能。传统离线数数据时效性是 T+1,调度频率以天为单位,无法支撑实时场景数据需求。即使能将调度频率设置成小时,也只能解决部分时效性要求不高场景,对于实效性要求很高场景还是无法优雅支撑。因此实时使用数据问题必须得到有效解决。2. 实时技术日趋成熟实时计算框架已
# 实时数技术架构概述 随着数据量不断增长和业务要求迅速变化,传统批处理数架构逐渐暴露出响应速度慢、数据无法实时更新等问题。因此,实时数技术应运而生,成为了现代数据处理一个重要领域。在本文中,我们将探讨实时数技术架构,并通过一些代码示例帮助大家更好地理解。 ## 一、实时数定义 实时数(Real-Time Data Warehouse)是指一个可以实时接收、处理和分析
原创 10月前
80阅读
前言随着我司业务飞速增长,实时数建设已经提上了日程。虽然还没有正式开始实施,但是汲取前人经验,做好万全准备总是必要。本文简单松散地记录一下想法,不涉及维度建模方法论事情(这个就老老实实去问Kimball他老人家吧)。动机随着业务快速增长,传统离线数不足暴露出来:运维层面——所有调度任务只能在业务闲时(凌晨)集中启动,集群压力大,耗时越来越长;业务层面——数据按T+1更新,延迟高,数
基于FLINK搭建实时数技术调研基于FLINK搭建实时数技术调研确定适合OLTP数据库结合OLTP和OLAP实时数架构实时数ETL流程总结 基于FLINK搭建实时数技术调研____数据仓库(DATA WAREHOUSE),是做大数据基本都会去涉及项目。简单来说,数是数据结构化存储和查询,并利用分布式计算引擎进行计算得到业务需要指标,以支持企业商业智能,通过充分挖掘数据价值,形
实时数技术架构正在成为数据管理和分析领域一大创新趋势,尤其是在大数据快速增长和实时数据处理需求不断增强时代。本文将从多个维度阐述实时数技术架构,帮助大家更好地理解这一复杂系统。 ## 背景描述 在过去几年中,实时数技术得到了快速发展,这得益于数据量激增和智能分析需求。根据Gartner报告,预计到2025年,全球数据总量将达到175ZB,这推动了企业在数据处理和分析上
收起桔妹导读:随着滴滴业务高速发展,业务对于数据时效性需求越来越高,而伴随着实时技术不断发展和成熟,滴滴也对实时建设做了大量尝试和实践。本文主要以顺风车这个业务为引子,从引擎侧、平台侧和业务侧各个不同方面,来阐述滴滴所做工作,分享在建设过程中经验。1. 实时数建设目的随着互联网发展进入下半场,数据时效性对企业精细化运营越来越重要,商场如战场,在每天产生海量数据中,如
转载 2023-10-17 08:03:30
183阅读
1.概述Hologres是阿里巴巴自主研发一站式实时数引擎,支持海量数据实时写入、实时更新、实时分析,支持标准SQL(兼容PostgreSQL协议),支持PB级数据多维分析(OLAP)与即席分析(Ad Hoc),支持高并发低延迟在线数据服务(Serving),与MaxCompute、Flink、DataWorks深度融合,提供企业级离在线一体化全栈数解决方案。2.功能概述多场景查询分析Ho
2、实时数方案2.1、为何需要实时数架构随着数据量增大,传统数据方案在时效性上和数据维护上变得越来越困难。实时数架构应运而生。具体方案落地上实时数有很多方案可以选择,不同业务和应用场景到底应该选择哪种技术方案?针对该问题梳理了市场上常见实时数方案和对应应用场景。2.2、数如何分层 & 各层用途数一般分为:ODS层、DWD层、DWS层和ADS层。1)ODS层:ODS是
转载 2023-01-07 23:09:50
1546阅读
1 为什么要建设实时数在开始说如何建设实时数之前,我们先说一下建设实时数目的,实时数解决了什么问题。其实在很多情况下,我们对于实时数定位可能是没有那么准确。我们都知道,传统数一个非常重要功能是用于记录历史,而实时数恰恰相反,它更重视处理当前状态。因此,我们创建实时数目的就在于解决传统数据仓库由于时效性低而解决不了问题。传统数可以解决问题,我们不解决;如果问题本身就
        “数据智性就显得尤为重要,快速获取数据反馈能够帮助公司更快做出决策,更好进行产品迭代,实时数在这一过程中起到了不可替代作用。一、实时数建设背景        传统意义上数据仓库主要处理T+1数据(即:今天产生
文章目录第1章 实时需求概览1.1 实时需求与离线需求比较1.2 数架构设计1.2.1 离线image-202101201154530071.2.2 实时1.3 本项目主要需求1.3.1 当日用户首次登录(日活)分时趋势图,昨日对比1.3.2 当日新增付费用户(首单)分析(ods+dwd)1.3.3 订单明细实付金额分摊以及交易额统计(dws)1.3.4 ADS聚合及可视化(ads)第2章
文章目录一、实时数据1.1 日志采集器1.1 日志生成器1.3 日志分发器1.4 采集流脚本二、实时采集2.1 项目搭建2.2 Kafka 数据获取2.3 Redis 数据去重2.4 ES 数据存储2.5 精准一次性消费2.6 Kibana 可视化配置2.7 发布数据接口三、实时监控3.1 Canal3.1.1 配置 MySQL3.1.2 安装 canal3.2 Canal ODS 层数据分流3
转载 2024-01-08 13:15:35
269阅读
随着互联网发展从红海时代进入蓝海时代,数据时效性对企业精细化运营越来越重要,在每天产生海量数据中,如何挖掘出实时有效信息,对于公司快速决策、产品快速迭代都非常重要。在本地生活服务领域两大巨头,滴滴在自己业务如顺风车、美团在自己业务如团购外卖中进行实时数建设,为消费者提供更好服务,如我们在滴滴上可以更快打到更便宜车、在美团上可以更快取到最想要吃餐,这其中功劳也要算
目录一、数分层介绍二、实时需求概览三、统计架构分析四、日志数据采集1. 模拟日志生成器使用2. 日志采集模块-本地测试3. 日志采集模块-打包单机部署五、业务数据库数据采集1. MySQL 准备2. 环境搭建3. 代码实现六、Nginx 安装七、Maxwell 安装八、Canal 安装 一、数分层介绍1. 普通实时计算与实时数比较普通实时计算优先考虑时效性,所以从数据源采集经过实时
转载 2023-08-07 15:52:47
298阅读
         目前大概分为离线数实时数。离线数一般是T+1数据ETL方案;实时数一般是分钟级别甚至更短时间内ETL方案。实时数一般是将上游业务库数据通过binlog等形式,实时抽取到Kafka,进行实时ETL。但目前主流实时数也会细分为两类,一类是标准实时数,所有的ETL过程都通过
转载 2019-12-26 09:33:00
284阅读
  • 1
  • 2
  • 3
  • 4
  • 5