## 神经网络拟合曲面 神经网络是一种灵活而强大的机器学习模型,可以用于解决各种复杂的问题。其中一个重要的应用就是曲面拟合。在本文中,我们将介绍神经网络如何通过学习数据集中的模式来拟合曲面,并通过代码示例来演示这个过程。 ### 什么是曲面拟合 曲面拟合是通过一组数据点来近似表示一个曲面。这个曲面可以是任意形状,可以用来描述各种问题,例如图像处理、物体识别和人脸识别等。通过拟合一个曲面,我们
原创 2023-08-28 12:09:59
294阅读
TensorFlow是Google开源的一个深度学习框架,之前接触过一些但是没有好好的深入了解,从这篇文章开始记录自己所学到的知识。本次主要记录一个简单的例子,以后会慢慢深入,包括多层神经网络,卷积神经网络,循环神经网络,自编码网络,深度神经网络和对抗神经网络。实例描述假设有一组数据集,其中x与y的对应关系为:y = 3x + 0.5。我们想让神经网络学习这些样本,并从中找到这个规律,通俗来说就是
使用神经网络拟合数据1. 人工神经网络1.1 神经网络神经神经网络:一种通过简单函数的组合来表示复杂函数的数学实体。 人工神经网络和生理神经网络似乎都使用模糊相似的数学策略来逼近复杂的函数,因为这类策略非常有效。这些复杂函数的基本构件是神经元。其核心就是给输入做一个线性变换(如乘以一个权重再加上一个常数作为偏置),然后应用一个固定的非线性函数,即激活函数。 比如: w和b就是要学习的参数,wx
激活函数引用首先,单个神经元是长这样的: 也就是,当A=σ(Z)=Z时,不使用激活函数的话,那么,单个神经网络,输出只能是A = ΣWX + b1. 从训练数据来理解。假如我们的神经网络,仅仅是一个单细胞的神经元联想我们的样本,例如在做图片识别的时候,通常来说,训练数据:x1,x2,x3,是某动物的概率。(例如:有毛发:1,有獠牙:1,毛色R:255,毛色G:109,毛色B:100,是豹
省流宽的神经网络容易过拟合,深的神经网络更能够泛化。想要读懂这篇文章,你需要知道什么是神经网络的深度:神经网络的层数,更确切地说,隐藏层数什么是神经网络宽度:在一个层上,神经元的数量 深度为2,宽度为6的神经网络 为什么激活函数如sigmoid可以拟合理论上所有的函数: 因为sigmoid、relu等激活函数非线性的特点,将激活层上不同的sigmoid函数相加,能够近似各种复杂的
前言 本篇博客主要以神经网络拟合数据这个简单例子讲起,然后介绍网络的保存与读取,以及快速新建网络的方法。一、神经网络对数据进行拟合import torch from matplotlib import pyplot as plt import torch.nn.functional as F # 自定义一个Net类,继承于torch.nn.Module类 # 这个神经网络的设计是只有一层隐含层
神经网络是如何拟合任意函数的 一个最原始粗暴的拟合任意函数的思路,是将函数切成很多段线性函数,之后用逻辑门控制当x在哪一个区间时,某些逻辑门被激活,对应的线性函数的权重w与偏移量b在逻辑门的包裹下变成非0,计算出y在这一段的输出值。 需要推导出拟合函数y=f(x)需要哪些逻辑门,以及如何使用神经网络构建这些逻辑门。开关函数 s: 当u>0时s(u)=1,否则s(u)=0 
回到多元方程的求解方法对于构建一个神经网络来说,需要求出每一个神经元的参数。每一层都有线性变换,加上非线性变换组成。 神经网络的求解变成一个多元方程的求解问题。图:要求解的线性函数变换(单层)        y1 = x1w11 + x2w21+ ... + xnwn1 + b1        y2 = x1w12
本文以实现逻辑回归为例,逻辑回归如图所示,只有一个神经元结点。1. 激活函数logistic回归的激活函数一般使用sigmoid(x),其他情况可以使用tanh(x),ReLU(x)或者泄露ReLU(x),激活函数内容可以参考:从零开始搭建神经网络(一)基础知识。这里以sigmoid(x)为例表达式如下:def sigmoid(z): """ sigmoid激活函数 :pa
1、matlab中如何用神经网络求得数据拟合函数?我是做这个方向的,神经网络拟合出的曲线是没有相应的函数的,他是根据许多的权重值,阀值和偏置值的训练确定的曲线。谷歌人工智能写作项目:小发猫2、如何防止神经网络拟合,用什么方法可以防止?你这个问题本来就问的很模糊,你是想问神经网络的过拟合变现什么样还是为什么出现过拟合呢。为此针对于第一个问题,神经网络的过拟合与支持向量机、高斯混合模型等建模方法的过
一、背景        之前做过一个项目是需要将位图转换成矢量图,其中一个很重要的步骤,就是需要用贝塞尔曲线拟合一些散列点。了解贝塞尔曲线的同学都知道,如果贝塞尔曲线的控制点都明确的情况下,想算出来线上的点是很容易的,直接套公式就可以把点的坐标算出来。但是如果这个过程反过来,给你一些点的坐标,求出贝塞尔曲线的控制点,是很困难的。    &
tensorflow所构建的体系是清楚明了的,所以我们只需要在其提供的默认图上添加各种op,然后执行相应的op即可下面的这个例子将从拟合一维函数的角度对tensorflow编程进行一个简单的介绍1.编程思路在区间[-5, 5]内随机生成若干个点,作为函数的自变量采样点序列x,然后手动生成这个自变量序列所对应的函数值序列y,这个序列要加上噪声。# 首先生成x坐标数据 x = np.float32(n
BP(back propagation)即反向传播,是一种按照误差反向传播来训练神经网络的一种方法,BP神经网络应用极为广泛。BP 神经网络主要可以解决以下两种问题: 1.分类问题:用给定的输入向量和标签训练网络,实现网络对输入向量的合理分类。 2.函数逼近问题:用给定的输入向量和输出向量训练网络,实现对函数的逼近。本文主要介绍 BP 算法实现函数逼近问题。一.函数基本逻辑介绍a.基本输入输出:
此系列文章为笔者学习工作中的阶段性总结,难免有纰漏,如有不正之处,欢迎指正,大家共同成长。在介绍正则化之前,先啰嗦几句神经网络训练的本质。我们知道神经网络训练的本质其实是对 函数(目标函数)构成的高维空间寻找合适的参数。由于满足同一条件 的参数很多,所以loss函数由许多等值曲面构成(二维情况下是等值线)。而由于训练过程采用的优化方法一般是随机梯度下降SGD
3.1 过拟合、欠拟合及解决方案训练误差(training error):模型在训练数据集上表现出的误差;泛化误差(generalization error):模型在任意一个测试数据样本上表现出的误差的期望;(泛化样本是指除训练样本之外的all)验证集:用于调参过拟合、欠拟合如下图所示:L2范数正则化(regularization):在模型原损失函数加上L2范数惩罚项(权重参数W中每个元素平方和与
【深度学习中的一些概念】神经网络的结构:https://www.bilibili.com/video/BV1bx411M7Zx梯度下降法(Gradient Descent):https://www.bilibili.com/video/BV1Ux411j7ri反向传播:https://www.bilibili.com/video/BV16x411V7Qg分段线性(piecewise linear)
刚刚在看一篇名为《中国人口增长模型》的数学建模论文时,同时最近人工智能又处于风口上,所以就想能不能将神经网络算法应用到时间序列型的模型上,当经过一会的思考否决了这个算法,因为神经网络算法是属于数据拟合算法。 这里先结合网上的资料简单介绍一下什么是神经网络算法,在高中的生物课上我们都学过大脑里面充满了神经元,人的大脑活动实际上是大脑神经元的活动,人要完成一个思考需要非常非常多个神经元共同作用,但是
Cost function(代价函数)1、参数表示:m 个训练样本:{(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}神经网络的层数:Ll 层的神经元数量(不计入偏置单元):Sl 2、两种分类问题:(1)Binary classification(二元分类):y = 0 or 1只有一个输出单元 / hθ(x)为一个实数 / SL =
1 神经元从本质上讲,神经元不过是输入的线性变换(例如,输入乘以一个数[weight,权重],再加上一个常数[偏置,bias]),然后再经过一个固定的非线性函数(称为激活函数)。神经元:线性变换后再经过一个非线性函数o = f(wx + b),其中 x 为输入,w为权重或缩放因子,b为偏置或偏移。f是激活函数,在此处设置为双曲正切( tanh)函数。通常,x 以及&n
转载 2023-05-23 10:18:06
1151阅读
本文只是个人学习神经网络时记下的一些笔记。1.train函数用法  2.newp函数用法:3.sim函数 在matlab中提供了sim函数,对于神经网络进行仿真,格式:[y,pf,af,perf]=sim(net,p,pi,ai,t)或者[y,pf,af]=sim(net,{qts},pi,ai)  4.plotpv函数 plotpc函数:用于绘制
  • 1
  • 2
  • 3
  • 4
  • 5