人工智能(AI)是近几年来最热的话题之一,不管是医疗界、互联网界、服务界,还是制造业、工业等等,不和AI挂个边都不好意思出来和人打招呼(比如咱们运维界也有AIOps)。机器学习(Machine Learning, ML),是人工智能的核心,是让计算机具有智能的途径。今天,我们就来看看四种常用的机器学习编程语言的优缺点,愉快的走在知识的前沿吧!本文自:机器之心;作者:MJ Bahmani编译:张
# 如何在R语言中实现PSM(倾向评分匹配) 倾向评分匹配(Propensity Score Matching,PSM)是一种用于减少混杂因素影响的统计方法,常用于观察性研究中对不同处理组进行比较。本文将为你介绍在R中如何实现PSM,包含从数据准备到结果可视化的完整流程。 ## 流程概述 我们可以将整个PSM的过程分为以下步骤: | 步骤 | 描述 | |------|------| |
原创 2024-09-30 05:01:33
626阅读
目录前言一、数据背景二、使用步骤1.加载所需的R包2.读入数据与处理表格3.enrichGO函数进行GO/KEGG/自定义通路的富集4.简单的可视化三、结论 前言clusterProfiler 是业界大神Y叔写的一个R包,可以用来各种富集分析,如GO、KEGG、以及GSEA富集分析等,并且对富集分析结果进行可视化。这里将使用clusterProfiler包对一些数据进行GO、KEGG等富集分析,
转载 2023-08-08 09:18:17
498阅读
倾向评分匹配(Propensity Score Matching,简称PSM)是一种统计学方法,用于处理观察研究(Observational Study)的数据,在SCI文章中应用非常广泛。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confounding variable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。 为什么
转载 2023-08-13 11:06:04
186阅读
1评论
Univariate OptimizationGeneral OptimizationNelder-Mead methodBFGS methodCG methodL-BFGS-B methodSANN methodBrent methodHow to useoptimcontrol optionscomponents of returned valueconstrained optimizati
转载 2023-11-19 11:37:46
128阅读
该文章主要介绍倾向得分匹配(PSM, Propensity Score Matching)方法的原理以及实现。这是一种理论稍微复杂、但实现较为容易的分析方法,适合非算法同学的使用。可用于(基于观察数据的)AB实验、增量模型搭建等领域。文章主要分为四部分:前置知识(因果推断)介绍、倾向得分计算与匹配与匹配质量检验、匹配示例与增量计算还有一些补充的小知识点。对因果推断有简单了解的同学可以跳过第一部分,
 咱们得循序渐进哦!!!SSA = Signature Scheme with AppendixPSS = Probabilistic Signature SchemeES = Encryption SchemesSSA是填充、封装格式;PSS是私钥签名流程;ES是公钥加密流程。 即中间人有办法控制m。二、来讲讲RSASA-PSS2018年发布的 TLS v1.3(TLS:Transpo
PSM 「倾向性评分匹配」(propensity score matching,PSM)是一种用来评估处置效应的统计方法。广义说来,它将样本根据其特性分类,而不同类样本间的差异就可以看作处置效应的无偏估计。PSM主要是在随机对照试验(Randomized controlled trials,RCT)中用于衡量treat组和control组样本的其他各项特征(如年龄、体重、身高、人种
很久以前的做过的东西,想想还是扔过来复习记录一下。 任务:验证天气预报温度数据准确性,即将天气预报数据与当日观测站数据对比 数据处理目标:将气象站点的观测数据与爬取的预报数据匹配并拼接,便于后续的预报准确率处理。 图1 观测气象站点数据 图2 爬取的天气预报数据 下面开始:台站提取手头上的天气预报数据为38×3=114个,以地点拼音命名,如"akesu.csv",站点数据95个,以站号命名,如"5
转载 2023-11-21 23:35:32
17阅读
倾向评分匹配(Propensity Score Matching,简称PSM)是一种统计学方法,用于处理观察研究(Observational Study)的数据,在SCI文章中应用非常广泛。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confounding variable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。 为什么
需求背景:        策略不适用随机分流,在某部分人群全量上线,需要同通过构建相似人群的方式,对策略进行评估。评估方案:        1、使用PSM构建相似人群,确保实验组与对照组在AA期的评估指标趋势能够保持一致        2、
转载 2023-12-02 18:06:03
1331阅读
写在前面后台难得有读者私信,请教了下图中文章的GSEA图能不能用R来画,今天就来简单写个教学。 GSEA(Gene Set EnrichmentAnalysis),即基因集富集分析,它的基本思想是使用预定义的基因,将基因按照在两类样本中的差异表达程度排序,然后检验预先设定的基因集合是否在这个排序表的顶端或者底端富集。GSEA 和GO、KEGG pathway不同的地方在于,后两者会提前设定一个阈值
转载 2023-06-25 13:20:52
985阅读
怎么画散点图矩阵?data <- data.frame(x=c(1,2.5,3),y=c(3,5,6),z=c(2,3,5)) data pairs(data[,1:3]) 怎么看散点图矩阵?第一行第二个图表示的是y与x的关系,其中y为横坐标,x为纵坐标第一行第三个图表示的是z与x的关系,其中z为横坐标,x为纵坐标第二行第一个图表示的是x与y的关系,其中x为横坐标,y为纵坐标
R语言灰色关联分析法输入数据数据的标准化/归一化求灰色系数求差序列和最大值最小值求关联系数计算关联度并排序所有代码 灰色关联度分析(Grey Relation Analysis,GRA),是一种多因素统计分析的方法。简单来讲,就是在一个灰色系统中,我们想要了解其中某个我们所关注的某个项目受其他的因素影响的相对强弱,再直白一点,就是说:我们假设以及知道某一个指标可能是与其他的某几个因素相关 的,那
混合模型是k个分量分布的混合,它们共同形成混合分布:F(x )f(x)(点击文末“阅读原文”获取完整代码数据)。F(x )= Σk = 1ķαķFķ(x )f(x)=∑k=1Kαkfk(x)为什么要使用混合模型?让我们通过一个例子激发您为何使用混合模型的原因。让我们说有人向您展示了以下密度图:p <- ggplot(faithful, aes
转载 2023-06-25 13:19:53
204阅读
倾向得分匹配(PSM),是一种模仿RCT随机对照试验随机化分组,提高组间均衡性,进而达到降低混杂因素影响目的一种数据处理策略。PSM在计量研究,临床医学等领域有着广泛的应用。1.案例背景与分析策略1.1 案例背景介绍某企业想评价专项培训的效果,现收集到78位员工的个人及工作成绩信息,包括性别、年龄、教育年、初始工作成绩与当前工作成绩、工作经验、工作时间、职位类别、是否参加培训等数据。数据上传SPS
转载 2024-02-19 11:17:03
288阅读
对于熟悉线性回归拟合结构方程模型的分析师来说,在R环境中,拟合结构方程模型涉及学习新的建模语法,新的绘图语法以及通常是新的数据输入方法结构方程模型入门 介绍然而,拟合结构方程模型可以成为分析师工具箱中的强大工具。相关视频设置 环境在R中实现SEM有许多不同的包,lavaan软件包为大多数SEM用户提供了全面的功能集,并且具有易于学习的语法来描述SEM模型。要安装lavaan,我们只需运行
R语言平台;模型构建、拟合、筛选及结果发表全流程;潜变量分析;组成变量分析;非线性关系处理、非正态数据、分组数据、嵌套数据分析与处理;混合效应模型;贝叶斯方法;经典案例练习及解读) 现代统计学理论和方法的不断完善,使科研工作对统计方法的要求也越来越高,面对纷繁复杂的数据,如何选择最为合适的数据分析方法已成为科研工作者,尤其是广大刚处于科研生涯起步阶段的研究生们最为棘手问题。随着科学的发展,一些科
结构方程模型是一个线性模型框架,它对潜变量同时进行回归方程建模(点击文末“阅读原文”获取完整代码数据)。相关视频引言 诸如线性回归、多元回归、路径分析、确认性因子分析和结构回归等模型都可以被认为是SEM的特例。在SEM中可能存在以下关系。观察到的变量与观察到的变量之间的关系(γ,如回归)。潜变量与观察变量(λ,如确认性因子分析)。潜变量与潜变量(γ,β,如结构回归)。SEM独特地包含了测
1.什么是NMDS分析? 人眼一般能感知的空间为二维和三维。高维数据可视化的重要目标就是将高维数据呈现于二维或三维空间中。高维数据变换就是使用降维度的方法,使用线性或非线性变换把高维数据投影到低维空间,去掉冗余属性,但同时尽可能地保留高维空间的重要信息和特征。 非度量多维标度(NMDS)分析,是PCoA的非度量替代方法。NMDS是一种将多维空间的研究对象(样本或变量)简化到低维空间进行定位、分析和
转载 2023-06-25 15:14:08
373阅读
  • 1
  • 2
  • 3
  • 4
  • 5