引言时间序列建模的主要目标之一就是对时间序列未来取值的预测. 而另一个最重要的目标即是对预测精确性的评估.可以说之前的所有知识都是为预测与评估作准备的.所谓预测就是利用已观测样本数据,对未来某时刻的取值进行估计. 对时间序列预测,基于这样一个假设: 已观测信息包含时间序列模型的所有信息,其中一部分是可读的,基于可读信息,可以构建时间序列模型,此模型在一定的精度要求下, 可以作为真实模型的近似.最佳
1. 时序预测模型1.1 分类统计学模型,较为经典的AR系列,包括AR、MA、ARMA以及ARIMA等,另外Facebook(Meta)推出的Prophet模型,其实本质上也是一种统计学模型,只不过是传统的趋势、周期性成分的基础上,进一步细化考虑了节假日、时序拐点等因素的影响,以期带来更为精准的时序规律刻画;机器学习模型,在有监督机器学习中,回归问题主要解决的是基于一系列Feature来预测某一L
      在普通的CNN中随着模型的加深,train的效果不会保持不变或者更好,反而是会下降。应用resnet可以使模型在加深的同时还能保持好的表现。其原理就是跳过一层或多层单元,走捷径直接到下面的单元。        对于本次比赛,我应用cifar_10的resnet模型进行调整得到的预测结果还可以,top3可以达到90以上
         6月14日,本文的作者之一孙剑老师因病离世,让人扼腕叹息,他的研究成果极大推动了人工智能技术的发展和应用,孙老师的逝世是人工智能技术领域的一大损失。哀悼!        论文:https://arxiv.org/abs/1512.03385      &nbsp
摘要本文主要是用了残差学习,这篇论文也就使用了残差结构超分网络使得效果大大超越SOTA移除传统残差网络中不必要的模块 。多尺度的超分(MDSR)和训练方法。也是NTIRE2017超分挑战的冠军 1、Introduction:(1)网络结构微小的改动对重构效果影响很大。(对resblock的BN改进)  相同的网络在不同的初始化和训练技巧下会有不同的结果。网络结构的设计和优化方法是重要的。
当需要根据已有的时间序列数据,预测未来多个时刻的状态时,被称之为时间序列多步预测。 时间序列多步预测有五种策略,分别为: 1、直接多步预测(Direct Multi-step Forecast) 2、递归多步预测(Recursive Multi-step Forecast) 3、直接递归混合预测(Direct-Recursive Hybrid Forecast) 4、多输出预测(Multiple
转载 2023-07-19 22:13:58
278阅读
TSDataset TSDataset 是 PaddleTS 中一个主要的类结构,用于表示绝大多数的时序样本数据,并作为PaddleTS其他算子的输入以及输出对象。TSDataset 包涵两类时序数据:待预测目标:表示希望被预测时序序列协变量:无需被预测的时间序列,协变量的加入通常用于辅助提高模型预测的效果TSDataset支持的时序样本数据可以分为:单变量数据,只包含单列的预测目标,同时可以包
转载 2024-05-11 21:19:09
483阅读
TF 2.0 - 时间序列预测入门最近 Google 正式将 TensorFlow 2.0 作为默认 TensorFlow 版本了,作为一名初学者,决定用相对易用的新版的 TensorFlow 来进行实践。在接下来的内容中,我将记录我用 LSTM 和 Beijing PM2.5 Data Set 来进行时间序列预测的过程。因为 ipynb 文件里都包含图片,所以在文章里就不上图了哈。0. 环境Pa
转载 2024-03-18 23:36:04
134阅读
最近我在进行论文的写作,接下来会将自己做的对比算法分享给大家,以帮助像我一样遇到问题想来上求救的小伙伴们。我采用的数据集为PeMS04和PeMS08,如果有使用相同数据集的小伙伴们可以一起交流。 做到ARIMA对比算法时,发现固定order的ARIMA算法无法做到对所有全时空路网节点的流量进行预测,会出现报错情况。因为路网所有节点的交通流量不一定都符合同一ARIMA参数,便采用auto_arima
转载 2024-07-29 15:57:28
79阅读
时间序列预测在众多领域中(例如电力、能源、天气、交通等)都有广泛的应用。时间序列预测问题极具挑战性,尤其是长程时间序列预测(long-term series forecasting)。在长程时间序列预测中,需要根据现有的数据对未来做出较长时段的预测。在部分场景中,模型输出的长度可以达到 1000 以上,覆盖若干周期。该问题对预测模型的精度和计算效率均有较高的要求。且时间序列往往会受到分布偏移和噪音
文章目录一、时间序列分割TimeSeriesSplit1、TimeSeriesSplit的分割数据集的原理2、girdsearchcv和时序数据结合二、时间序列预测需要注意的问题1、传统时序建模的方法:2、现代预测方法3、注意问题3.1 概念漂移3.2 序列的自相关性3.3 训练集和测试集的划分3.4 时间序列基本规则法-周期因子3.5 利用时间特征做线性回归其它 一、时间序列分割TimeSer
T-GCN: A Temporal Graph Convolutional Network for Traffic PredictionAbstract准确、实时的交通预测是智能交通系统的重要组成部分,对城市交通规划、交通管理和交通控制具有重要意义。然而,由于受城市路网拓扑结构和动态随时间变化规律的制约,交通预测一直被认为是一个开放的科学问题。为了同时捕获网络的时空相关性,本文提出了一种基于神经网
 0 简介 赛题描述 首先,你要做的第一步工作就是解读数据以及相关文件。从竞赛的描述可以看出,你需要做的就是利用数据集中的关于房子的79个特征数据去预测房价 (SalePrice),但是这些特征数据既有离散型的也有连续型的,有数值型的也有字符型的,而且存在大量的缺失值,以及一定数量的异常值。具体的数据解读可以查看比赛方提供的data_description.txt这
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications https://arxiv.org/abs/1704.04861 下面总结了目前常用的一些减少网络计算量的方法:基于轻量化网络设计:比如mobilenet系列,shufflenet系列, Xception等,使用Group卷积、1x1
# Java 时序预测 在软件开发中,时序预测是一种重要的技术,用于分析和预测系统的行为。在Java编程中,我们可以利用一些工具和库来进行时序预测,并根据预测结果来优化系统的性能。本文将介绍Java中的时序预测以及如何使用相关工具进行预测和优化。 ## 什么是时序预测时序预测是分析和预测时间序列数据的技术。时间序列数据是按照时间顺序排列的数据,如价格、气温变化等。时序预测可以帮助我们
原创 2024-01-22 09:42:41
112阅读
论文标题: Triformer: Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting 摘要各种现实应用依赖于遥远未来的信息来进行决策,因此需要高效和准确的长序列多元时间序列预测。尽管最近的基于注意力的预测模型在捕捉长期依赖性方面表现出很强的能力,但它们仍然受到
时间序列预测就是利用过去一段时间的数据来预测未来一段时间内的信息,包括连续型预测(数值预测,范围估计)与离散型预测(事件预测)等,具有非常高的商业价值。通常,时间序列预测描述了预测下一个时间步长的观测值。这被称为“单步预测”,因为仅要预测一个时间步。例如,给定最近7天观察到的温度:单步预测仅需要在时间步骤8进行预测。在一些时间序列问题中,必须预测多个时间步长。与单步预测相比,这些称为多步时间序列预
XGBoost是用于分类和回归问题的梯度提升集成方法的一个实现。XGBoost是为表格式数据集的分类和回归问题而设计的,也可以用于时间序列预测。通过使用滑动时间窗口表示,时间序列数据集可以适用于有监督学习。下面我们一起来学习下:1、xgboost安装:pip install xgboost也可以使用scikit-learn API中的XGBRegressor包装类2、例子讲解让我们用一个例子来具体
1、总括时间序列是一种衡量事物随时间变化的数据类型。在一个时间序列数据集中,时间列本身不代表一个变量:它实际上是一个基本结构,可以使用它对数据集排序。由于我们需要应用特定的数据预处理和特征工程技术来处理时间序列数据,因此这种基本的时间结构使时间序列问题更具有挑战性。2、时间序列分析是要确定时间序列数据的内在结构并推断其隐藏特征,以便从中获得有用的信息。利用时序分析的原因。对历史时间序列数据的基本结
论文标题: Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting 论文链接: https://openreview.net/pdf?id=0EXmFzUn5I 源码链接: https://github.com/alipay/Pyraformer摘要根据过
  • 1
  • 2
  • 3
  • 4
  • 5