最近在阅读 Airbnb 的论文 Applying Deep Learning to Airbnb Search。阅读的过程中,我发现作者在谈及特征归一化的必要性时,有如下表述:Feeding values that are outside the usual range of features can cause large gradients to back propagate. T
转载
2024-08-01 21:01:57
14阅读
(4)Leaky ReLUReLU是将所有的负值设置为0,造成神经元节点死亡的情况。相反,Leaky ReLU是给所有负值赋予一个非零的斜率。优点:(1)神经元不会出现死亡的情况。(2)对于所有的输入,不管是大于等于0还是小于0,神经元不会饱和(3)由于Leaky ReLU线性、非饱和的形式,在SGD中能够快速收敛。(4)计算速度要快很多。Leaky ReLU函数只有线性关系,不需要指数计算,不管
转载
2024-03-18 17:44:02
1027阅读
正则表达式正则表达式为高级的文本模式匹配,抽取,与/或文本形式的搜索和替换功能提供了基础。正则表达式是一些由字符和特殊符号组成的字符串,它们描述了模式的重复或者表述多个字符。转义符\在正则表达式中,有很多有特殊意义的是元字符,比如\n和\s等,如果要在正则中匹配正常的"\n"而不是"换行符"就需要对""进行转义,变成’\’。在python中,无论是正则表达式,还是待匹配的内容,都是以字符串的形式出
前言论文地址: https://arxiv.org/pdf/1505.00853.pdf.论文贡献:这篇论文并没有提出什么新的激活函数,而是对现有的非常火的几个非饱和激活函数作了一个系统性的介绍以及对他们的性能进行了对比。最后发现,在较小的数据集中(大数据集未必),Leaky ReLU及其变体(PReLU、RReLU)的性能都要优于ReLU激活函数;而RReLU由于具有良好的训练随机性,可以很好的
转载
2024-04-25 14:05:54
0阅读
其实一直在做论文阅读心得方面的工作,只是一直没有分享出来,这篇文章可以说是这个前沿论文解读系列的第一篇文章,希望能坚持下来。简介论文提出了动态线性修正单元(Dynamic Relu,下文简称 DY-ReLU),它能够依据输入动态调整对应分段函数,与 ReLU 及其静态变种相比,仅仅需要增加一些可以忽略不计的参数就可以带来大幅的性能提升,它可以无缝嵌入已有的主流模型中,在轻量级模型(如 Mobile
#***文章大纲***#
1. Sigmoid 和梯度消失(Vanishing Gradients)
1.1 梯度消失是如何发生的?
1.2 饱和神经元(Saturated Neurons)
2. ReLU 和神经元“死亡”(dying ReLU problem)
2.1 ReLU可以解决梯度消失问题
2.2 单侧饱和
2.3 神经元“死亡”(dying
转载
2024-04-14 06:49:24
67阅读
1、神经网络为什么引入激活函数?如果不引入激活函数,神经网络的每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层的效果相当,这种情况就是最原始的感知机(Perceptron)。因此,引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。激活函数的作用就是为了增加神经网络模型的非线性。2、Sigmoid函数缺点:*
转载
2024-09-01 19:01:29
41阅读
在该文章的两大创新点:一个是PReLU,一个是权值初始化的方法。下面我们分别一一来看。 PReLU(paramter ReLU)所谓的PRelu,即在 ReLU激活函数的基础上加入了一个参数,看一个图就明白了:右边的图上多了一个参数吧,在负半轴上不再为0,而是一个可以学习的斜率。 很容易明白。实验结果显示该方法可以提高识别率。权值初始化的方法: 对于文中
转载
2024-03-01 12:42:36
157阅读
为什么要引入激活函数?如果不用激活函数(其实相当于激励函数是f(x)=x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机了。正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者ta
转载
2024-07-21 19:37:37
42阅读
写在前面:此文只记录了下本人感觉需要注意的地方,不全且不一定准确。详细内容可以参考文中帖的链接,比较好!!!常用激活函数(激励函数)理解与总结激活函数的区别与优点梯度消失与爆炸1. 激活函数是什么?在多层神经网络中,上层节点的输出和下层节点的输入之间具有一个函数关系,这个函数称为激活函数(又称激励函数)。2. 激活函数的用途如果不用激活函数,每一层的输入都是上一层输出的线性函数,而多层线性函数与一
转载
2024-07-12 16:45:26
747阅读
具体来说,在门控注意力单元中,会有一个额外的投影产生输出,该输出是在输出投影之前通过逐元素的乘法组合得到的。注意力是 t
原创
2024-08-08 10:19:21
84阅读
目录:深度学习中常见的几种激活函数一、前言二、ReLU函数三、sigmoid函数四、tanh函数 一、前言激活函数(activation function)通过计算加权和并加上偏置来确定神经元是否应该被激活, 它们将输入信号转换为输出的可微运算。 大多数激活函数都是非线性的。 由于激活函数是深度学习的基础,下面简要介绍一些常见的激活函数。二、ReLU函数最受欢迎的激活函数是修正线性单元(Rect
转载
2024-02-13 22:49:53
69阅读
无论在深度学习还是在机器学习中,激活函数是必不可少的,这里做下总结。修正线性单元 ReluRectified linear unit。深度学习用的最多的3个激活函数之一,为什么说他在深度学习中用的多呢?因为简单,速度快。。下面给出图与公式。输出值范围[0,1)。·特点:计算量小;很多x的左侧都为提高网络的稀疏性,降低过拟合的发生;降低出现梯度为0的机会,从上图不难看出,ReLU函数其实是分段线性函
转载
2024-08-21 11:02:09
193阅读
# PyTorch ReLU与ReLU6实现指南
作为一名刚入行的开发者,你可能会对PyTorch中的ReLU和ReLU6激活函数感到困惑。不要担心,这篇文章将帮助你了解这些函数的基本概念,并教你如何在PyTorch中实现它们。
## ReLU与ReLU6简介
ReLU(Rectified Linear Unit)是一种常用的激活函数,其公式为:
\[ \text{ReLU}(x) = \m
原创
2024-07-24 11:44:40
185阅读
框架介绍TensorRT的流程:输入是一个预先训练好的FP32的模型和网络,将模型通过parser等方式输入到TensorRT中,TensorRT可以生成一个Serialization,也就是说将输入串流到内存或文件中,形成一个优化好的engine,执行的时候可以调取它来执行推断(Inference)。只要理解框架的运作方式,就很容易利用官方给的samples和手册进行代码的魔改了。插件支持Plu
转载
2024-05-27 19:57:08
87阅读
文章目录1. 线性整流单元(Rectified Linear Unit, ReLU)简介1.1 Sigmoid和Tanh激活函数的局限性1.2 ReLU激活函数2. ReLU 激活函数的优点2.1 计算简单2.2 稀疏性表示(Representational Sparsity)2.3 线性性质2.4 训练深度神经网络3. 使用ReLU的技巧3.1 使用ReLU作为默认的激活函数3.2 ReLU适
转载
2024-02-29 11:25:15
82阅读
文章目录1 sigmoid激活函数的不足之处2. Relu3. Relu的变种3.1 LeakReLU3.2 PReLU3.3 RReLU4. MaxOut 网络4.1 与ReLU的关系4.2 可能训练处激活函数的样子4.3 MaxOut 的训练 1 sigmoid激活函数的不足之处在网络结构非常深的情况下,由于梯度消失问题的存在,可能会导致靠近输入附近的隐藏层的权重变化较慢,导致结果训练效果较
转载
2024-04-08 20:57:12
66阅读
第一天一、ReLU 激活函数全称是 Rectified Linear Unit。rectify(修正)可以 理解成马修(0,x),从趋近于零开始,然后变成一条直线。二、神经网络的监督学习在监督学习中你有一些输入x,你想学习到一个函数来映射到一些输出y。1.提到的几种神经网络的用处图像应用:卷积(Convolutional Neural Network),缩写CNN。 序列数据:种递归神经网络(Re
转载
2024-08-11 11:28:04
118阅读
最接近人类语言的编程语言-rebolrebol的详细资料见www.rebol.org。这里谈一下我得印象。rebol 的缺点是明显的。它是一个商业公司的产品。它只是象java一样免费使用。但不开放源代码。并且它的数据库连接的函数库是收费的。但 它的优点也十分明显,如果因为不是开放源代码软件而不能放心使用,也可以欣赏和借鉴它的种种特点,并且了解了rebol肯定还会忍不住使用 它。首 先rebol是一
在神经网络中,激活函数负责将来自节点的加权输入转换为该输入的节点或输出的激活。ReLU 是一个分段线性函数,如果输入为正,它将直接输出,否则,它将输出为零。它已经成为许多类型神经网络的默认激活函数,因为使用它的模型更容易训练,并且通常能够获得更好的性能。在本文中,我们来详细介绍一下ReLU,主要分成以下几个部分:1、Sigmoid 和 Tanh 激活函数的局限性2、ReLU(Rectified L
转载
2024-04-02 20:41:18
97阅读