把图像分成若干个特定的、具有独特性质的区域,每一个区域代表一个像素的集合,每一个集合代表一个物体,而完成该过程的技术通常称为图像分割。图像分割方法主要分为:基于阈值的分割方法、基于区域分割方法、基于边缘的分割方法,以及基于特定理论的分割方法等。 阈值分割实现简单、计算量小、性能稳定。 阈值分割处理又称为图像的二值化处理。 文章目录1 全局阈值分割APIOTSU优化TRIANGLE优化直方图技术法
目录一、定义二、分类三、分割难点四、常用算法五、相关论文研读六、参考所用到的文献和博客等 一、定义文字图像识别近年来应用广泛 包括传统OCR和自然场景下的文字识别图1 印刷文档中的文本图像图2 自然场景中的文本图像常见的文字图像识别应用基本上是遵循下面的流程: 字符定位 → 字符分割 → 字符识别例如车牌识别 车牌识别一般分为车牌检测、字符分割和字符识别三个主要步骤。其中,字符分割是指将原始图像
一、大津法OTSU(最大类间方差法) 在实际运用过程中,大津法表现得最稳定,且无需参数,对于现实图像保持了最好的均匀性和形状特性,而且被商业软件GIMP 和学术软件Matlab采纳为自动阈值法。 原理:Otsu分割方法求取阈值是求得使类间方差最大的阈值:假设待分割图像的像素数为N(就是常说的几百万像素了),它有L个灰度级(0,1,…,L-1),灰度级为i的像素数为ni,那么直方图概率密度
OpenCV是一个巨大的开源库,广泛用于计算机视觉,人工智能和图像处理领域。它在现实世界中的典型应用是人脸识别,物体检测,人类活动识别,物体跟踪等。现在,假设我们只需要从整个输入帧中检测到一个对象。因此,代替处理整个框架,如果可以在框架中定义一个子区域并将其视为要应用处理的新框架,该怎么办。我们要完成一下三个步骤:• 定义兴趣区• 在ROI中检测轮廓• 阈值检测轮廓轮廓线什么是ROI?简而言之,我
目录0x01 FloodFill分割0x02 均值漂移MeanShift0x03 图割Grabcut0x04 奇异区域检测0x05 肤色检测0x01 FloodFill分割FloodFill泛洪填充算法是在很多图形绘制软件中常用的填充算法,通常来说是自动选中与种子像素相关的区域,利用指定的颜色进行区域颜色替换,可用于标记或分离图形的某些部分。比如windows系统中的图像编辑软件中的油漆桶这一功能
      分割的结果中通常包含不想要的干扰,如我们感兴趣的物体被干扰了,如由于反射对分割结果造成的干扰,这时,形态学操作提供了特别有用的方法,让我们调整和描述物体的形状。       本文聚焦形态学操作的若干典型应用,不会对形态学操作的基本数学理论进行系统的阐述,也不会对Op
转载 2024-03-04 21:32:30
89阅读
分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征。其他图像分割方法,如阈值,边缘检测等都不会考虑像素在空间关系上的相似性和封闭性这一概念,彼此像素间互相独立,没有统一性。分水岭算法较其他分割方法更具有思想性,更符合人眼对图像的印象。其他关于
一、连通区域分析连通区域(Connected Component)一般是指图像中具有相同像素值且位置相邻的前景像素点组成的图像区域(Region,Blob)。连通区域分析(Connected Component Analysis,Connected Component Labeling)是指将图像中的各个连通区域找出并标记。连通区域分析是一种在CVPR和图像分析处理的众多应用领域中较为常用和基本的
转载 2024-01-27 12:17:36
52阅读
opencv学习心得——基础篇——了解OpenCV数据类型——基本数据类型与详解 FOR THE SIGMA FOR THE GTINDER FOR THE ROBOMASTER简介:这一系列的学习心得第一轮将参考《学习OpenCV3》一书操作系统版本:Ubuntu16.04(在这里博主在Linux下进行运行的) 桌面版ubuntu16.04 下载电子版书籍下载地址 暂无资源内容:OpenCV的基
介绍OpenCV是一个用于图像处理、分析、机器视觉方面的开源函数库。该库的所有代码都经过优化,计算效率很高,因为,它更专注于设计成为一种用于实时系统的开源库。opencv采用C语言进行优化,而且,在多核机器上面,其运行速度会更快。它的一个目标是提供友好的机器视觉接口函数,从而使得复杂的机器视觉产品可以加速面世。该库包含了横跨工业产品检测、医学图像处理、安防、用户界面、摄像头标定、三维成像、机器视觉
作者丨nihate导读作为ncnn推理框架里唯一一款做实例分割的模型,yolact也展现出了它的魅力,实现端到端一阶段完成实例分割且运行速度快。本文为作者上手编写的一套使用opencv部署YOLACT做实例分割的程序,程序包含C++和Python两种版本,附相关代码地址。YOLACT,全称为:You Only Look At CoefficienTs,从标题可以看出这个模型的名称有些致敬YOLO的
最近需要做一个图像分割的程序,查了opencv的源代码,发现opencv里实现的图像分割一共有两个方法,watershed和mean-shift算法。这两个算法的具体实现都在segmentation.cpp文件内。watershed(分水岭算法)方法是一种基于边界点的分割算法。我想好好的研究一下, 网上找了一些博客和教程,感觉也就泛泛的解释了一下实验的流程,具体算法的运行过程并不清楚,又把原始论文
最简单的图像分割的方法。应用举例:从一副图像中利用阈值分割出我们需要的物体部分(当然这里的物体可以是一部分或者整体)。这样的图像分割方法是基于图像中物体与背景之间的灰度差异,而且此分割属于像素级的分割。为了从一副图像中提取出我们需要的部分,应该用图像中的每一个像素点的灰度值与选取的阈值进行比较,并作出相应的判断。(注意:阈值的选取依赖于具体的问题。即:物体在不同的图像中有可能会有不同的灰度值。一旦
转载 2024-07-10 18:27:36
56阅读
前言前面我们说了两种分割方法,这一章我们说图像的分水岭分割。分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征。API介绍void watershed( InputArray image, InputOutputArray markers );参数
 基本思想OpenCV中支持的两种背景提取算法都是基于模型密度评估,然后在像素级对图像进行前景与背景分类的方法,它们具有相同的假设前提 – 各个像素之间是没有相关性的,跟它们算法思想不同的方法主要是基于马尔可夫随机场理论,认为每个像素跟周围的像素是有相关性关系,但是基于马尔可夫随机场的方法速度与执行效率都堪忧!所以OpenCV中没有实现。基于像素分类的背景分析方法自适应的背景提取(无参数
文章目录轮廓周围绘制矩形和圆形框相关API使用方法Code效果 轮廓周围绘制矩形和圆形框1、API介绍; 2、代码演示;相关API1、轮廓线拟合API: approxPolyDP(): curve : 输入多边形;curve : 曲线 approxCurve : 输出拟合后的多边形(轮廓点数减少) epsion : 两点之间的最小距离; closed : 形成的多边形是否封闭; 基于RDP算法
转载 2024-10-11 16:29:48
22阅读
泛洪填充(Flood Fill)很多时候国内的开发者称它为漫水填充,该算法在图形填充与着色应用程序比较常见,属于标配。在图像处理里对二值图像的Hole可以通过泛洪填充来消除,这个是泛洪填充在图像处理中很经典的一个用途,此外还可以通过泛洪填充为ROI区域着色。这个在图像处理也经常用到。让我们首先看一下泛洪填充算法本身,然后再说一下在图像处理中的应用场景。泛洪填充算法通常泛洪填充需要从一个点开始,这个
# 使用 OpenCV 实现连通区域分割的Python入门 连通区域分割(Connected Component Labeling)是计算机视觉中的一个重要技术,主要用于识别图像中的独立区域。这项技术的应用广泛,如物体识别、图像分析等。本文将介绍如何利用 Python 和 OpenCV 库实现简单的连通区域分割。 ## 基本概念 在图像中,连通区域指的是由一系列相邻像素组成的区域。在灰度或二
原创 11月前
133阅读
# Opencv Python 重点区域分割实现教程 ## 1. 整体流程 在实现Opencv Python重点区域分割的过程中,我们可以分为以下几个步骤: ```mermaid classDiagram class 小白 class 经验丰富的开发者 小白 --|> 经验丰富的开发者 ``` 1. 读取图像 2. 灰度转换 3. 边缘检测 4. 重点区域分割
原创 2024-02-20 04:19:24
113阅读
图像的输入、输出获取图像基本信息像素取反色彩空间转换捕捉视频中的颜色物块通道的分离与合并算术运算逻辑运算调整图像亮度、对比度泛洪填充模糊操作高斯噪声、高斯模糊边缘保留滤波(EPF)像素直方图像素直方图应用直方图反向投影(定位)模板匹配图像二值化图像金字塔图像梯度Canny边缘提取直线检测提取水平、竖直线圆检测轮廓发现对象测量膨胀、腐蚀开闭操作其他形态学操作分水岭算法(图像分割)人脸检
  • 1
  • 2
  • 3
  • 4
  • 5