# 如何在PyTorch自定义损失函数 在深度学习中,损失函数是模型训练的重要组成部分,它用于评估模型预测的好坏。当标准损失函数无法满足需求时,我们可以自定义损失函数。本文将带你了解如何在PyTorch框架中实现自定义损失函数。 ## 流程概述 以下是实现自定义损失函数的基本步骤: | 步骤 | 描述 | | ---- | ---- | | 1 | 创建一个自定义损失类,继承自 `to
原创 2024-09-05 05:52:50
141阅读
 由于各种知识的博客杂乱无章, 所以我就特意整理了一个比较完整的Pytorch自定义拓展的博文。希望对所有人读了之后,都有所帮助。前言:Pytorch 的灵活性体现在它可以任意扩展我们所需要的内容。以下内容都是属于Pytorch 的扩展。自定义模型自定义自定义激活函数自定义损失函数要实现自定义拓展,有两种方式。方式一:通过继承torch.nn.Module 类来实现扩展。特点有:包装
0理论上带有一个非线性函数的网络能够拟合任意函数。那显然MLP和RNN是科研拟合sinx的。 开头先把结果给展示出来,然后是代码,最后是我的过程。懒得看的直接看前半部分行了,过程给有兴趣的人看看。先上结果图注:每次训练torch初始化有不同,所以结果有出入。代码乍一看挺多的,实际上简单得一批。只不过是定义了两个网络,训练了两次,展示图片的重复代码而已。具体代码已经注释。import torch i
使用损失函数的目的就是,为了描述神经网络预测的答案和真实的答案之间的“
原创 2023-02-17 16:59:41
185阅读
一. 概念:张量、算子 张量的定义是矩阵的扩展与延伸,我认为张量就是n个数量的n维数组,也可认为是高阶的矩阵。算子的定义是构建复杂机器学习模型的基础组件,我觉得算子是一个算法单元,就是一个可以进行某种操作的函数。二. 使用pytorch实现张量运算 1.2 张量1.2.1 创建张量1.2.1.1 指定数据创建张量a=torch.tensor([2.0,3.0,4.0]) #创建一个一维张量 b
文章目录1. 直接利用torch.Tensor提供的接口2. 利用PyTorch的numpy/scipy扩展3. 写一个PyTorch的C扩展 1. 直接利用torch.Tensor提供的接口因为只是需要自定义loss,而loss可以看做对一个或多个Tensor的混合计算,比如计算一个三元组的Loss(Triplet Loss),我们只需要如下操作:(假设输入的三个(anchor, positiv
Pytorch搭建模型的五大层级级别、自定义模型、自定义网络层(待学习)pytorch搭建模型的的五大层次级别Pytorch搭建模型五大层次级别 博客下的Pytorch搭建模型的五大层次级别神经网络的基本流程可以分为两大步骤:网络结构搭建+参数的梯度更新(后者又包括  “前向传播+计算参数的梯度+梯度更新”)1)原始搭建——使用numpy实现# -*- coding: utf-
目录4.4 自定义Layer4.4.1 不含参数的自定义4.4.2 含参数的自定义层4.5读取和存储4.5.1 读写Tensor4.5.2 读写Model4.5.2.1 state_dict4.5.2.2 保存和加载模型4.6 GPU计算4.6.1 计算设备4.6.2 Tensor的GPU计算4.6.3 Model的GPU计算说明 4.4 自定义Layer本节将介绍如何使用Module来自定义
转载 2023-11-06 18:07:52
61阅读
总说虽然pytorch可以自动求导,但是有时候一些操作是不可导的,这时候你需要自定义求导方式。也就是所谓的 “Extending torch.autograd”. 官网虽然给了例子,但是很简单。这里将会更好的说明。扩展 torch.autogradclass LinearFunction(Function): # 必须是staticmethod @staticmethod
转载 2023-06-05 22:37:37
608阅读
深度学习Pytorch(七)——核心小结2之自定义自动求导函数+Pytorch和TensorFlow搭建网络的比较 文章目录深度学习Pytorch(七)——核心小结2之自定义自动求导函数+Pytorch和TensorFlow搭建网络的比较一、定义新的自动求导函数二、Pytorch 和 TensorFlow对比 一、定义新的自动求导函数在底层,每个原始的自动求导运算实际上是两个在Tensor上运行的
博主在学习三值神经网络时,使用了LeNet-5模型,编程代码,需要对LeNet-5模型中的卷积层与全连接层进行自定义,搜索他人方法后,博主产生了一个疑问,绝大多数提供的自定义层方法都是继承 nn.Module 模型,而这方法据说是官方提供,自定义线性层代码如下:class Linear(nn.Module): def __init__(self, input_features, outpu
pytorch 是一个基于 python 的深度学习库。pytorch 源码库的抽象层次少,结构清晰,代码量适中。相比于非常工程化的 tensorflow,pytorch 是一个更易入手的,非常棒的深度学习框架。对于系统学习 pytorch,官方提供了非常好的入门教程 ,同时还提供了面向深度学习的示例,同时热心网友分享了更简洁的示例。1. overview不同于 theano,
标量反向传播当目标张量为标量时,backward()无需传入参数。例子:假设都是标量, ,对标量调用backward()方法。自动求导的主要步骤import torch1.定义叶子结点,算子节点如果需要对Tensor求导,requires_grad要设置为True。# 定义输入张量x x = torch.Tensor([2]) # 初始化权重参数w,偏置b,#设置requires_grad为Tru
PyTorch进阶训练技巧import torch import numpy as np import torch.nn as nn import torch.nn.functional as F1. 自定义损失函数# 以函数的方式定义损失函数,通过输出值和目标值进行计算,返回损失值 def my_loss(output,target): loss = torch.mean((output
学习网站在此:https://datawhalechina.github.io/thorough-pytorch/以下是对知识的记录(都记下来)一、自定义损失函数许多损失函数并未出现在官方库中,需要我们自己来实现,尤其在日新月异的ai领域,模型与相关算法的更新很快,同时,在科学研究领域,当提出全新的损失函数时,这也要求我们自行定义,以验证其在数据集上的好坏1.1函数方式def my_loss(ou
一 利用Variable自动求导1.1 Variable1.1.1 定义  在pytorch中,我们需要能够构建计算图的 tensor,这就是 Variable数据结构。Variable 是对 tensor 的封装,操作和 tensor 是一样的,但是每个 Variabel都有三个属性,Variable 中的 tensor本身.data,对应 tensor 的梯度.grad以及这个 Variabl
摘要在训练神经网络时,最常用的算法是反向传播。 在该算法中,参数(模型权重)根据损失函数相对于给定参数的梯度进行调整。 为了计算这些梯度,PyTorch 有一个名为 torch.autograd 的内置微分引擎。 它支持任何计算图的梯度自动计算。 考虑最简单的一层神经网络,输入 x,参数 w 和 b,以及一些损失函数。 它可以通过以下方式在 PyTorch定义:import torch x
###前言 Keras本身提供了很多常用的loss函数(即目标函数),但这些损失函数都是比较基本的、通用的。有时候我们需要根据自己所做的任务来自定义损失函数,虽然Keras是一个很高级的封装,自定义loss还是比较简单的。这里记录一下自定义loss的方法,一为助记、二为助人。 ###官方定义损失函数 ####第一种方式:自定义一个函数 自定义loss函数之前,我们可以看看Keras官方是如何定义
各种损失函数损失函数或代价函数来度量给定的模型(一次)预测不一致的程度损失函数的一般形式:风险函数:度量平均意义下模型预测结果的好坏损失函数分类:Zero-one Loss,Square Loss,Hinge Loss,Logistic Loss,Log Loss或Cross-entropy Loss,hamming_loss分类器中常用的损失函数:Zero-One Loss该函数计算nsampl
在上一节的线性回归的例子中,我们通过一定的矩阵运算获得了每张图像的最终得分(如下图),可以看到,这些得分有些是比较好的预测,有些是比较差的预测,那么,具体如何定义“好”与“差”呢?这就需要引入“损失函数”的相关概念了。损失函数关于损失函数的精准定义可以在维基百科或者百度百科里查到,但是这种定义不太容易理解,这里我用一种比较通俗的说法来介绍损失函数:损失函数就是可以准确的告诉我们,分类器是好是坏的一
  • 1
  • 2
  • 3
  • 4
  • 5