文章目录1.自定义数据集Dataset2.读取数据集Dataloader3.torchvision 包3.1torchvision.datasets3.2torchvision.models3.3torchvision.transforms3.4 常见的torchvision.transforms图片操作 PyTorch通过torch.utils.data对一般常用的数据加载进行了封装,可以很
大规模数据集是成功应用深度神经网络的前提,图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度
为了能够完成各种操作,我们需要某种方法来存储和操作数据。一般来说,我们需要做两件重要的事情:(1)获取数据;(2)在将数据读入计算机后对其进行处理。如果没有某种方法来存储数据,那么获取数据是没有意义的。我们先尝试一下合成数据。首先,我们介绍 ? 维数组,也称为张量(tensor)入门首先,我们导入torch。请注意,虽然它被称为PyTorch,但我们应该导入torch而不是pytorchimpor
转载 2023-08-08 09:37:57
82阅读
Pytorch学习之数据加载一、Dataset类二、torchvision.transforms.Compose使用三、torchvision.datasets.ImageFolder使用详解四、按批加载数据-----DataLoader类 一、Dataset类这个类可以看成是自定义的数据集类(是一个抽象类,不能直接实例化,只能继承) 代码如下(示例):class Mydataset(Datas
本学习笔记基于 Dive-into-DL-PytorchTensor是pytorch中所应用的一种数据结构,torch.Tensor是存储和变换数据的主要工具。1.1.1 创建Tensor创建Tensorimport torch #导入Pytorch x= torch.empty(5,3) #创建一个5*3的随机Tensor print(x)输出:tensor([[1.0102e-38, 1.0
transformstransforms运行机制 torchvision.transforms:常用的图像预处理方法 torchvision.datasets:常用数据及的dataset实现,mnist,cifar-10,imagenet等 torchvision.model:常用的模型与训练,AlexNet,VGG,ResNet,GoogLeNet等 torchvision:计算机视觉工具包我们
转载 2023-08-18 14:10:07
63阅读
文章目录前言一、Dataset定义-组成分类二、获取数据集1.参数说明2.相关Demo 前言本文记录笔者关于Dataset的相关学习记录,以Pytorch官网文档为主进行学习一、Dataset定义-组成所谓Dataset,指的是我们在学习神经网络中要接触的数据集,一般由原始数据,标注Label及相关索引构成 这里笔者给出基于自己的理解所进行的论述,比方说,我们要训练一个识别猫和狗的神经网络,我们
pytorch数据读取Pytorch数据读取主要包含三个类:DatasetDataLoaderDataLoaderIter这三者是依次封装的关系,Dataset被装进DataLoader,DataLoder被装进DataLoaderIter。Dataloader的处理逻辑是先通过Dataset类里面的__getitem__函数获取单个的数据,然后组合成batch,再使用collate_fn所指定
转载 2023-09-21 03:10:09
271阅读
深度学习:需要速度在训练深度学习模型时,性能至关重要。 数据集可能非常庞大,而低效的训练方法意味着迭代速度变慢,超参数优化的时间更少,部署周期更长以及计算成本更高。由于有许多潜在的问题要探索,很难证明花太多时间来进行加速工作是合理的。 但是幸运的是,有一些简单的加速方法!我将向您展示我在PyTorch中对表格的数据加载器进行的简单更改如何将训练速度提高了20倍以上,而循环没有任何变化! 这只是Py
一、图像基本处理以及数据集的简单创建初次接触pytorch,配置环境还是比较麻烦的,主要是用到anaconda下面是对图像处理的基本操作from PIL import Image # 图像处理的库 img_path = r'D://情绪图片测试/path1.jpg' # 图片路径 img = Image.open(img_path) # 调用方法,打开该图像 print(img.size)
一. 张量PyTorch里面最基本的操作对象就是Tensor,Tensor是张量的英文,表示的是一个多维的矩阵,比如零维就是一个点,一维就是向量,二维就是一般的矩阵,多维就相当于一个多维的数组,这和numpy是对应的,而且PyTorch的Tensor和numpy的ndarray可以相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在CPU上运行。我们先介绍一下
第三十三课 数据增广       数据增广的不仅仅是处理图片,还可以处理文本或语音。我们在这里其实主要专注的是图片上的一些技术。可以看到这几张图是说是对一个松鼠做不同的一些处理,比如说可以把一些像素拿掉、把它的颜色做变换,然后最后面一个是对它的亮度做很多变换。目录理论部分实践部分理论部分    &n
问题背景训练深度学习模型往往需要大规模的数据集,这些数据集往往无法直接一次性加载到计算机的内存中,通常需要分批加载。数据的I/O很可能成为训练深度网络模型的瓶颈,因此数据的读取速度对于大规模的数据集(几十G甚至上千G)是非常关键的。例如:https://discuss.pytorch.org/t/whats-the-best-way-to-load-large-data/2977采用数据库能够大大
转载 2023-10-18 07:30:27
136阅读
前言无论是在作分类任务或者是目标检测任务都需要数据集的处理,一种是txt文件保存标签的信息,另一种只有图片如下图的形式,这一步也是学会faster-rcnn的关键点 分为训练和验证的照片 | 每个分类的类别 一种是猫的照片,另一种是狗的照片,这种是自己的数据集,其实官方的数据集也是这样放置的,比如CIFAR10,其中的是有10个文件夹,每个文件夹下是很多张一种数字的照片,正常情况下我们引进官方数
import torch import torchvision from torchvision import datasets,transforms dataroot = "data/celeba" # 数据集所在文件夹 # 创建数据集 dataset = datasets.ImageFolder(root=dataroot, transf
pytorch用于加载数据集的模块主要是torch.utils.data(https://pytorch.org/docs/stable/data.html)。本文详细介绍了如何在自己的项目中(针对CV)使用torch.utils.data。1 综述1.1 pytorch常规训练过程我们一般使用一个for循环(或多层的)来训练神经网络,每一次迭代,加载一个batch的数据,神经网络前向反向传播各一
转载 2023-09-25 09:51:40
96阅读
目录一.使用的工具包二. 数据准备三. 代码实现: 一.使用的工具包torch.utils.data.Dataset torch.utils.data.DataLoader二. 数据准备  以猫狗为例实现分类,按照如下图所示建立文件和文件夹,我这里自己准备了20张猫狗图像。   test.txt文件是后面代码生成的,先不用管,cats和dogs里面放上自己的图片,然后通过脚本生成test.txt
熟悉深度学习的小伙伴一定都知道:深度学习模型训练主要由数据、模型、损失函数、优化器以及迭代训练五个模块组成。如下图所示,Pytorch数据读取机制则是数据模块中的主要分支。Pytorch数据读取是通过Dataset+Dataloader的方式完成。其中,DataSet:定义数据集。将原始数据样本及对应标签映射到Dataset,便于后续通过index读取数据。同时,还可以在Dataset中进行数据
Pytorch的基本数据结构是张量Tensor。张量即多维数组。Pytorch的张量和numpy中的array很类似。本节我们主要介绍张量的数据类型、张量的维度、张量的尺寸、张量和numpy数组等基本概念。一,张量的数据类型张量的数据类型和numpy.array基本一一对应,但是不支持str类型。包括:torch.float64(torch.double), torch.float32(torch
在3.5节我们利用PyTorch的torchvision、data等包,下载及预处理MNIST数据集。数据下载和预处理是机器学习、深度学习实际项目中耗时又重要的任务,尤其是数据预处理,关系到数据质量和模型性能,往往要占据项目的大部分时间。好在PyTorch为此提供了专门的数据下载、数据处理包,使用这些包,可极大提高我们的开发效率及数据质量。 本章将介绍以下内容:  简单介绍PyTorch相关的数
转载 2024-06-07 18:03:11
161阅读
  • 1
  • 2
  • 3
  • 4
  • 5