torchvision 是 torch 中计算机视觉库,提供了3种类型的接口,包括 datasets、transforms、model,其中 transforms 封装了各种图像数据增强的方法 裁剪transforms.CenterCrop(size):从图像中心裁剪图片size:裁剪尺寸transforms. RandomCrop:从图像中随机裁剪出指定尺寸的图片size:裁减尺寸pa
转载
2023-06-13 18:56:34
247阅读
后面的所有变换,均以此为原图:一、改变尺寸resizeimport math
import random
import torch
from PIL import Image, ImageDraw
import torchvision.transforms.functional as F
def resize(img, boxes, size, max_size=1000):
w, h
数据增强数据增强又称为数据增广,数据扩增,它是对训练集进行变换,使训练集更丰富,从而让模型更具泛化能力。 数据增强 ---> 如我们高考之前做的五年高考,三年模拟一 、 transforms. --
# PyTorch数据增强
在深度学习领域中,数据增强是一种常用的技术,通过对训练数据进行随机变换和扩充,可以增加数据集的多样性,减少过拟合,并提高模型的鲁棒性。PyTorch是一种常用的深度学习框架,提供了丰富的数据增强方法,本文将介绍PyTorch中常用的数据增强技术,并通过代码示例说明其用法。
## 数据增强方法
PyTorch中的数据增强方法包括图像变换、图像加噪、图像裁剪和翻转等。
原创
2023-09-07 20:14:07
237阅读
# -*- coding: utf-8 -*-import PIL.Image as Imageimport osfro
原创
2023-05-18 17:10:01
99阅读
一、继承nn.Module类并自定义层我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类。首先,简单实现一个Mylinear类: from torch import nn
# Mylinear继承Module
class Mylinear(nn.Module):
# 传入输入维度和输出维度
def __init__(self,in_d
数据增强技术就是人为地生成真实数据集的不同版本以增加其数据大小。计算机视觉(CV)和自然语言处理 (NLP) 模型使用数据增强策略来处理数据稀缺和数据多样性不足的问题。数据增强算法可以提高机器学习模型的准确性。根据实验,图像增强后的深度学习模型在训练损失(即对错误预测的惩罚)和准确性以及验证 损失和准确性方面比没有增强图像分类任务的深度学习模型表现更好。1.什么是计算机视觉中的数据增强技术?图像
一、PhotometricDistortclass PhotometricDistort(object):
def __init__(self):
#定义6个操作
self.pd = [
RandomContrast(),
ConvertColor(transform='HSV'),
R
数据扩增Part 1 数据读取与数据扩增图像读取数据扩增基于图像处理的数据扩增几何变换灰度和彩色空间变换添加噪声和滤波图像混合(Mixing images)随机搽除(Random erasing)基于深度学习的数据扩增使用PyTorch进行数据增强使用Albumentations进行数据增强Part 2 评价与损失函数IOUDice coefficientDice LossBinary Cros
# PyTorch 离线数据增强:提升模型性能的有效手段
在深度学习中的图像处理任务中,数据集的规模和多样性对模型的训练效果至关重要。然而,很多时候我们拥有的数据集受到限制,这使得模型可能会过拟合,无法在未见过的数据上表现良好。本文将探讨如何使用 PyTorch 进行离线数据增强,以提高模型的鲁棒性和泛化能力。
## 什么是数据增强?
数据增强是一种通过对训练数据进行变换,以生成新样本的技术
PyTorch 2.0 于 2022 年 12 月上旬在 NeurIPS 2022 上发布,它新增的 torch.compile 组件引起了广泛关注,因为该组件声称比 PyTorch 的先前版本带来更大的计算速度提升。这对我们来说是一个好消息,训练时间改进的结果令人印象深刻。PyTorch 团队在发布新闻稿和 PyTorch GitHub 上没有提到的是 PyTorch 2.0 推理性能。所以我们
转载
2023-10-31 18:33:09
36阅读
Python:图像数据增强和保存
在进行模型分析处理的时候,数据量不够的情况下,会使用数据增强的方式来扩充数据。数据增强的方式有:裁剪、镜像图片翻转、增加噪声等。需要注意的是数据增强后不应该影响 数据的标签。比如,数字识别时的 9 和 6 旋转后,会改变标签,影响数据。
转载
2023-07-17 23:21:15
155阅读
常用的数据增强方法 常用的数据增强方法如下: 1.对图片进行一定比例缩放 2.对图片进行随机位置的截取 3.对图片进行随机的水平和竖直翻转 4.对图片进行随机角度的旋转 5.对图片进行亮度、对比度和颜色的随机变化import sys
sys.path.append('..')
from PIL import Image
from torchvision import transforms as
转载
2023-10-11 16:04:13
100阅读
# PyTorch 图片数据增强指南
数据增强(Data Augmentation)是提高模型泛化能力的重要步骤,特别是在图像处理领域,能够有效缓解过拟合。本文将带您逐步实现PyTorch中的图片数据增强,帮助您掌握这一技能。
## 整体流程
首先,我们需要明确数据增强的整体流程。下面的表格列出了步骤及其对应的描述:
| 步骤 | 描述 |
|-
# PyTorch图片数据增强:提升模型性能的利器
在机器学习和深度学习领域,数据增强是一种常用的技术,用于增加训练数据的多样性,提高模型的泛化能力。对于图像数据,PyTorch提供了丰富的数据增强方法。本文将介绍PyTorch中图片数据增强的基本方法,并给出代码示例。
## 为什么需要数据增强?
在实际应用中,我们往往面临数据量不足的问题。数据增强可以有效地扩展数据集,增加模型的泛化能力。
数据增强策略:
1 在线模式--训练中
随机裁剪(完全随机,四个角+中心) crop
def random_crop(img, scale=[0.8, 1.0], ratio=[3. / 4., 4. / 3.], resize_w=100, resize_h=100):
"""
随机裁剪
:param img:
:param scale: 缩放
:par
转载
2023-07-24 23:56:53
107阅读
图像增广通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。1翻转和裁剪,2变化颜色(亮度、对比度、饱和度和色调)
图像增广在5.6节(深度卷积神经网络)里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从
转载
2023-08-26 20:41:05
86阅读
第三十三课 数据增广 数据增广的不仅仅是处理图片,还可以处理文本或语音。我们在这里其实主要专注的是图片上的一些技术。可以看到这几张图是说是对一个松鼠做不同的一些处理,比如说可以把一些像素拿掉、把它的颜色做变换,然后最后面一个是对它的亮度做很多变换。目录理论部分实践部分理论部分 &n
最终目的是复现fasterrcnn网络先附上整体代码#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2022/5/15 10:28
# @Author : 半岛铁盒
# @File : mydataset.py
# @Software: win10 python3.6
#定义一个自己的数据集
import random