最近学习和使用opencv读取和处理图像,然后用pytorch训练深度学习模型,部署和推理的时候用opencv+ncnn进行,过程中参考了很多网上教程和案例,结合源码发现了一个关于颜色空间的问题,很多网上资料的源码示例中并没有注意,自己也被误导了,特别记录一下,也供大家参考核心思想总结:当我们所有的彩色图像处理都打算采用RGB格式数据的时候,切记用opencv读取图像后要将图像从BGR转成RGB,
转载
2023-12-15 12:00:27
59阅读
# PyTorch RNN训练代码实现详解
在机器学习的众多算法中,循环神经网络(RNN)因其在处理序列数据方面的独特优势而备受关注。RNN广泛应用于自然语言处理、时间序列预测等领域。本文将介绍如何使用PyTorch框架构建并训练一个简单的RNN模型,并附上具体的代码示例。
## RNN的基本原理
RNN的核心在于其能够通过隐藏状态(hidden state)来记忆之前的输入信息。不同于传统
在pytorch模型训练时,基本的训练步骤可以大致地归纳为:准备数据集--->搭建神经网络--->创建网络模型--->创建损失函数--->设置优化器--->训练步骤开始--->测试步骤开始本文以pytorch官网中torchvision中的CIFAR10数据集为例进行讲解。需要用到的库为(这里说一个小技巧,比如可以在没有import对应库的情况下先输入"torc
转载
2023-09-19 12:13:16
129阅读
在 Facebook,我们认为,人工智能以更有效的新方式学习,就像人类一样,可以在将人们聚集在一起发挥重要作用。这一核心信念有助于推动我们的 AI 战略,将投资重点放在与使用真实数据学习的系统相关的长期研究上,激励工程师与更广泛的人工智能社区共享尖端工具和平台,并最终展示使用技术造福世界的新方法。2018 年,我们在各个领域都取得了重要进展。我们提出了新的研究,除了图像识别上的进展,在NLP领域,
# PyTorch NLP 预训练指南
在自然语言处理(NLP)中,使用预训练模型是非常流行的做法。预训练模型能够在较小的数据集上或有特定任务时,快速提升模型的表现。本文将引导你如何使用 PyTorch 来实现 NLP 预训练,特别是针对初学者,帮助他们掌握这一流程。
## 流程概述
在进行 PyTorch NLP 预训练之前,我们需要先了解整个流程。下表展示了主要步骤:
| 步骤 | 描
1、数据集来源中文数据集:THUCNews
THUCNews数据子集:https://pan.baidu.com/s/1hugrfRu 密码:qfud英文数据集:IMDB数据集 Sentiment Analysis
2、IMDB数据探索# 测试依赖包,TensorFlow版本
import tensorflow as tf
from tensorflow import keras
impo
转载
2023-10-25 17:32:10
63阅读
文章目录零、前置知识一、LSTM目标二、LSTM的结构解析门结构的介绍遗忘门(forget gate)输入门(input gate)输出门(output gate)总结一下前馈结构流程三、LSTM变种四、解决问题的思路(从循环神经网络到LSTM)问题一:解决随时间的流动梯度发生的指数级消失或者爆炸的情况问题二:将信息装入长时记忆单元论乘法:论加法:问题三:频繁装填带来的问题问题四:网络如何输出,
转载
2024-10-25 15:02:11
50阅读
是否想过智能键盘上的预测键盘之类的工具如何工作?在本文中,探讨了使用先验信息生成文本的想法。具体来说,将使用Google Colab上的递归神经网络(RNN)和自然语言处理(NLP),从16世纪文献中产生文章。这个想法很简单,将尝试为模型提供莎士比亚剧本的样本,以产生所有假零件,同时保持相同的本地语言。虽然预测性键盘会为可能包含多个单词的不完整句子生成最佳的“单个单词”匹配,但通过使用单个单词生
转载
2023-08-16 20:23:53
94阅读
好上篇讲了RNN和LSTM训练和结构与MLP和CNN的区别,讲的是比较清晰的。然后讲了RNN和LSTM的所有参数和输入输出。这篇讲RNN和LSTM的训练。以下直接讲RNN的,因为是一样的。差异会附在后面。emm还想分享一下自己的体会。一定要先看MLP结构和训练原理,再看CNN,再看RNN,再看LSTM。开始正文。一、RNN训练过程我们先看两张图。在上图中可以看出,对于一个RNN,需要求的参数有W,
转载
2024-08-06 18:45:24
281阅读
本专栏将主要介绍基于GAN的时序缺失数据填补。提起时序数据,就离不开一个神经网络——循环神经网络(Recurrent Neural Network, RNN)。RNN是一类用于处理序列数据的神经网络。RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息。因为在介绍时序缺失数据填补,就离不开RNN的身影。本文将介绍循环神经网络RNN,并再次基础上完成基于pytorch的简单RNN代码实现,帮
转载
2024-01-22 21:48:54
235阅读
Hinton 第七课 。这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是一种深度神经网络这里指的是前者,这部分翻译的不好,因为之前没怎么接触过RNN,不过就当理解意境吧,所以附上所有的ppt,看得懂的就看PPt,下面的是附带说明,有些语句没有那么通顺
转载
2024-08-02 08:04:39
74阅读
(pytorch1.0)最近在研究pytorch如何修改与训练模型的网络结构,然后发现了两种版本,一种是细调版,一种是快速版 经过一番钻研后发现细调版适合对网络模型进行大幅度的改动(如在原有的结构上穿插着增减层),而快速版适合直接对网络末端的层进行增减。 虽然快速版简单易懂,但是还是要对细调版有所了解才能比较,万一以后用的上呢。因此,我就好好研究了一番细调版,结果发现网上的代码或者博客基本
转载
2024-06-04 14:34:24
80阅读
训练RNN
原创
2021-08-02 13:42:48
143阅读
单机单卡训练模式# 设置GPU参数,是否使用GPU,使用那块GPU
if config.use_gpu and torch.cuda.is_available():
device=torch.device('cuda',config.gpu_id)
else:
device=torch.device('cpu')
# 检查一下GPU是否可以使
转载
2023-08-11 22:37:50
649阅读
训练(Training)打个比方,你现在想要训练一个能区分苹果还是橘子的模型,你需要搜索一些苹果和橘子的图片,这些图片放在一起称为训练数据集(training dataset),训练数据集是有标签的,苹果图片的标签就是苹果,橘子亦然。一个初始神经网络通过不断的优化自身参数,来让自己变得准确,可能开始10张苹果的照片,只有5张被网络认为是苹果,另外5张认错了,这个时候通过优化参数,让另外5张错的也变
1.47.Pytorch实现基本循环神经网络RNN (3)Recurrent Neural networks(Rumelhart, 1986)主要用来处理序列型数据,具有对以往数据的记忆功能。下图所示,输入为input和一个状态Hidden0, 输出为output和hidden1. 一般地,对输入到RNN进行处理的第t个数据,也就是第t时刻,输出的隐藏状态可以表示为: 在RNN对序列数据进行处理时
转载
2023-10-18 17:22:41
92阅读
代码解读说明一、项目结构二、训练部分2.1 模型导入(models.py解析)2.1.1 __init__函数2.1.2 _prepare_base_model函数2.1.3 _prepare_base_model函数附1 多gpu与断点恢复设置2.2 数据导入(dataset.py解析)2.2.1 __ init __函数2.2.2 _parse_list函数2.2.3 _sample_ind
转载
2023-11-30 18:18:37
76阅读
import torch
#简单RNN学习举例。
# RNN(循环神经网络)是把一个线性层重复使用,适合训练序列型的问题。单词是一个序列,序列的每个元素是字母。序列中的元素可以是任意维度的。实际训练中,
# 可以首先把序列中的元素变为合适的维度,再交给RNN层。
#学习 将hello 转为 ohlol。
dict=['e','h','l','o'] #字典。有4个字母
x_data=[1,0,2
转载
2023-09-15 22:08:15
153阅读
上次通过pytorch实现了RNN模型,简易的完成了使用RNN完成mnist的手写数字识别,但是里面的参数有点不了解,所以对问题进行总结归纳来解决。 总述:第一次看到这个函数时,脑袋有点懵,总结了下总共有五个问题:1.这个input_size是啥?要输入啥?feature num又是啥?2.这个hidden_size是啥?要输入啥?feature num又是啥?3.不是说RNN会有很多个
转载
2023-07-17 12:48:42
94阅读
目录前言run_nerf.pyconfig_parser()train()create_nerf()render()batchify_rays()render_rays()raw2outputs()render_path()run_nerf_helpers.pyclass NeRF()get_rays_np()ndc_rays()load_llff.py_load_data()_minify()
转载
2023-11-20 10:20:38
259阅读